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Abstract

This thesis focuses on the design of magnetic resonance imaging (MRI) radio-frequency (RF)
excitation pulses, and its primary contributions are made through connections with the novel
multiple-system single-output (MSSO) simultaneous sparse approximation problem. The
contributions are both conceptual and algorithmic and are validated with simulations, as
well as anthropogenic-object-based and in vivo trials on MRI scanners.

Excitation pulses are essential to MRI: they excite nuclear spins within a subject that
are detected by a resonant coil and then reconstructed into images. Pulses need to be
as short as possible due to spin relaxation, tissue heating, and main field inhomogeneity
limitations. When magnetic spins are tilted by only a small amount, pulse transmission may
be interpreted as depositing energy in a continuous three-dimensional Fourier-like domain
along a one-dimensional contour to form an excitation in the spatial domain. Pulse duration
is proportional to the length of the contour and inversely proportional to the rate at which
it is traversed, and the rate is limited by system gradient hardware restrictions. Joint design
of the contour and a corresponding excitation pulse is a difficult and central problem, while
determining near-optimal energy deposition once the contour is fixed is significantly easier.

We first pose the NP-Hard MSSO problem and formulate greedy and convex relaxation-
based algorithms with which to approximately solve it. We find that second-order-cone
programming and iteratively-reweighted least squares approaches are practical techniques
for solving the relaxed problem and prove that single-vector sparse approximation of a
complex-valued vector is an MSSO problem.

We then focus on pulse design, first comparing three algorithms for solving linear systems
of multi-channel excitation design equations, presenting experimental results from a 3 Tesla
scanner with eight excitation channels.

Our aim then turns toward the joint design of pulses and trajectories. We take joint de-
sign in a novel direction by utilizing MSSO theory and algorithms to design short-duration
sparsity-enforced pulses. These pulses are used to mitigate transmit field inhomogeneity in
the human brain at 7 Tesla, a significant step towards the clinical use of high-field imag-
ing in the study of cancer, Alzheimer’s disease, and Multiple Sclerosis. Pulses generated
by the sparsity-enforced method outperform those created via conventional Fourier-based
techniques, e.g., when attempting to produce a uniform magnetization in the presence of se-
vere RF inhomogeneity, a 5.7-ms 15-spoke pulse generated by the sparsity-enforced method
produces an excitation with 1.28 times lower root-mean-square error than conventionally-
designed 15-spoke pulses. To achieve this same level of uniformity, conventional methods



must use 29-spoke pulses that are 1.4 times longer.

We then confront a subset selection problem that arises when a parallel excitation system
has more transmit modes available than hardware transmit channels with which to drive
them. MSSO theory and algorithms are again applicable and determine surprising target-
specific mixtures of light and dark modes that yield high-quality excitations.

Finally, we study the critical patient safety issue of specific absorption rate (SAR) of
multi-channel excitation pulses at high field. We develop a fast SAR calculation algorithm
and propose optimizing an individual pulse and time-multiplexing a set of pulses as ways to
reduce SAR; the latter is capable of reducing maximum local SAR by 11% with no impact
on pulse duration.
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Thesis Supervisor: Vivek K Goyal
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Chapter 1

Introduction

1.1 Motivation

Magnetic resonance imaging (MRI) is an extremely useful tool for producing high-resolution
images of soft tissues in the human body. Unlike computed tomography (CT), MRI does
not require the use of ionizing radiation and is generally a safe, practical procedure [22].
MRI may be viewed as a two-stage experiment that non-invasively yields a spatial map-
ping of hydrogen nuclei in living subjects. Nuclear spins within a subject are first excited
using a radio-frequency (RF') excitation pulse and proportions of excited spins are then de-
tected using a resonant coil; images are then reconstructed from this data. Excitation pulses
need to be tailored to a user’s specific needs and in most applications need to be as short
in duration as possible due to spin relaxation, tissue heating, and main field inhomogeneity
limitations. Further, in almost all imaging scenarios, excitations must not only be fast,
but spatially-selective as well. That is, an excitation pulse should manipulate nuclear spins
within only a particular two-dimensional (2-D) or three-dimensional (3-D) region of space
(e.g., a 5-mm-thick slice of tissue), leaving spins outside of this region untouched and thus
undetectable by the readout coil. Such spatially-selective excitations reduce the duration
and complexity of both the data readout and image reconstruction processes [12]. Finally,
spatially-tailored excitation pulses are often desired: these pulses are able to vary the extent
to which nuclear spins are excited across space. In short, the design and analysis of such
short-duration, spatially-selective, spatially-tailored excitation pulses, their application to
open problems, and the study of a mathematical sparse approximation problem inspired by

MRI pulse design are important topics and the focus of this thesis.
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One may show that RF excitation pulse design, under a linear approximation, involves
choosing to deposit energy in a continuous, 3-D, Fourier-like domain in order to form some
desired excitation in the spatial domain [102]; this domain is referred to as ezcitation k-space.
Energy may only be deposited along a 1-D contour in k-space, and there are limitations on
where and how it may be placed: the velocity and acceleration with which one traverses
the contour are subject to MRI system gradient hardware threshold values and switching
times. The most important fact is that excitation pulse duration corresponds directly to
the length of the chosen contour and the rate it is traversed. A key problem then is to find
a short “trajectory” through this k-space (and a corresponding energy deposition along this
trajectory) such that a high-fidelity version of the desired excitation forms in the spatial
domain. Other problems of interest include analyzing the effect excitation pulses have on
tissue heating, the design of pulses to mitigate such safety concerns, and the creation of new
algorithms that will produce pulses suitable for use on newly-developed parallel transmission

hardware.

1.2 Applications

Overall, in broad terms, each contribution to MRI excitation put forth in this thesis gener-

ally focuses on one, two, or all three of the following application areas:

1.2.1 High-Field Transmit Profile B;" Inhomogeneity Mitigation

High-magnetic-field MRI systems exhibit great promise because they significantly increase
tissue contrast and signal-to-noise ratio (SNR) [65], but in vivo human imaging at high
field is impeded by the presence of severe B transmit profile inhomogeneity [16], a phe-
nomenon that arises due to wavelength interference effects [133,136] and tissue-conductive
RF amplitude attenuation [29]. When standard slice-selective RF excitation waveforms
that work well on low-field systems are used to conduct high-field imaging experiments,
Bj inhomogeneity causes the resulting images to exhibit undesirable center brightening,
spatial contrast variation, and SNR non-uniformity, despite the use of homogeneous volume
RF excitation coils [26,67,73,133,136]. Solving this problem is a critical and necessary
step towards the use of high-field imaging in the study of cancer, Alzheimer’s disease, and

Multiple Sclerosis [2]. Note that inhomogeneity is also a concern at low field when imaging
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structures such as the spine [119] and body [15].

1.2.2 Parallel Excitation Multi-Channel Pulse Design

A recent MRI excitation concept, termed “parallel transmission” (and sometimes referred
to as “parallel excitation” or “transmit SENSE”), involves equipping an MRI scanner with
an RF excitation coil that differs substantially froni those of standard systems in that
it is comprised of multiple elements that are each capable of independent, simultaneous
transmission [58, 79, 113, 130, 168, 169]. The presence of multiple elements allows one to
undersample a given excitation k-space trajectory and yet in many cases still form a high-
fidelity version of the desired excitation; undersampling the trajectory is greatly beneficial
because it reduces the distance one travels in k-space, in turn reducing the duration of the
corresponding pulse [58,79,113,130,168,169]. This ability to “accelerate” in the Fourier-
like k-space domain and reduce pulse duration arises due to the extra spatial degrees of
freedom provided by the system’s multiple transmit elements; significant acceleration is not
possible on a conventional system equipped with a single-channel transmission coil unless
sophisticated joint trajectory-pulse design techniques are employed. Paralle]l transmission
systems also offer a flexible means for spatially-tailoring excitation patterns for inner-volume
excitation [47] and addressing increased main field (Bp) and Bj" inhomogeneity observed
at high field strengths [133,136]. The design of parallel transmission pulses is an ongoing
open problem; a key issue of interest involves understanding and exploring to what extent
a given parallel transmission system may undersample excitation k-space and shorten pulse

duration and yet still produce a high-quality, patient-safe excitation.

1.2.3 Specific Absorption Rate Analysis and Reduction

Specific absorption rate (SAR)—defined as the average energy deposition in an N-gram
(Ng) region of tissue over a period of time due to the application of one or more radio-
frequency (RF) excitation pulses—is an important safety concern when conducting MRI
experiments on human subjects. Avoiding dangerously-high SAR is especially a concern for
the parallel transmission of spatially-tailored multi-dimensional excitation pulses through a
multi-channel transmission system [58,79,113,130,168,169]. This is because when multiple
transmit channels are simultaneously employed, the local electric fields generated by each

channel undergo superposition and local extremes in electric field magnitude may arise [168],
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leading to spikes in SAR within a local 1g or 10g region that are of major concern to regula-
tory bodies in both the United States [21] and Europe [70,71]. A recent study has confirmed
the frequent occurrence of such “hot spots” and found that parallel excitation pulses pro-
duce relatively high ratios of local SAR to whole-head mean SAR [111], making local rather
than global SAR the limiting factor of parallel transmission. Furthermore, it is unfortunate
that the greatest strength of parallel transmission systems—their ability to undersample
excitation k-space and reduce the length of the corresponding excitation pulse—creates an
additional SAR concern beyond the aforementioned one. Namely, accelerating a k-space
trajectory significantly increases peak pulse power [56,78,81,141], which to the first order
has a quadratic impact on SAR. For example, to maintain the same nuclear spin flip angle
and excitation quality, a conventional “hard” (i.e., constant amplitude) excitation pulse [12]
requires a peak power increase by a factor of C as its duration is shortened by the same
factor, causing global SAR to increase by a factor of C2?. Even when the repetition time of
the pulse is kept constant such that total RF duty cycle decreases by a factor of C, SAR
still increases linearly with C [78]. Understanding the SAR behavior of accelerated parallel
excitation pulses at both standard and high field strengths is an open problem, as is the
optimization of parallel transmission pulses (and pulse sequences) for the purpose of local

and global SAR reduction.

1.3 Algorithmic Focus: Multi-System Single-Output Simul-

taneous Sparse Approximation

Most of the advances in the first two MRI applications presented in this thesis are based on
forging connections with a novel sparse approximation problem and developing algorithms
for this problem. We will show that viewing pulse design from a sparsity approximation
perspective [23,24,31,34,37,41,43,44,52,93,96,107] gives rise to an NP-Hard linear inverse
problem where simultaneously sparse vectors are required to solve a set of equations involv-
ing multiple system matrices and a single known observation vector that is by itself a focus
worth pursuing from an applied mathematical standpoint. After studying multi-system,
single-output (MSSO) systems and designing MSSO algorithms independently of excitation

pulse design, we apply our work to the first two application areas listed above.
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1.4 Thesis Outline and Contributions

The chapter-by-chapter structure of the dissertation is given below. Publications and intel-
lectual property stemming from the work of each chapter are also listed.

Chapter 2 presents background information on MRI excitation theory, conventional
single-channel and multi-channel pulse design, and sparse approximation. The most impor-
tant segment of this chapter is our summary of how to linearize the continuous-time system
of differential equations governing MRI RF excitation under the low-flip-angle assumption
to arrive at the linear Fourier k-space relation between RF energy deposited by the system
and the resulting excitation that forms in the spatial domain [102].

Chapter 3 proposes the multiple-system, single-output (MSSO) simultaneous sparsity
problem, an NP-Hard linear inverse problem that requires the determination of multiple
unknown signal vectors. Each unknown vector passes through a different system matrix
and the results are added to yield a single observation vector. Given the matrices and lone
observation, the objective is to find a simultaneously sparse set of unknown vectors that
solves the system. Seven algorithms are formulated to approximately solve this problem.
Three greedy techniques are developed (matching pursuit [93], orthogonal matching pur-
suit [23,31,96], and least squares matching pursuit [31]) along with four methods based on
a convex relaxation (iteratively reweighted least squares [77], two forms of iterative shrink-
age [34,41,43,44], and formulation as a second-order cone program [17,92]). While deriving
the algorithms, we prove that seeking a single sparse complez-valued vector is equivalent to
seeking two simultaneously sparse real-valued vectors, increasing the relevance and ap-
plicability of MSSO theory, and then proceed to evaluate how well the techniques perform
during sparsity profile recovery and MRI multi-channel pulse design scenarios. Overall,
each algorithm is found to have its own particular weaknesses and merits, e.g., the iter-
ative shrinkage techniques converge slowly, but because they update only a subset of the
overall solution per iteration rather than all unknowns at once, they are useful in cases
where attempting the latter is prohibitive in terms of system memory. This work has been

submitted as an article to the journal indicated below:

e A. C. Zelinski, V. K. Goyal, and E. Adalsteinsson. Simultaneously Sparse Solutions
to Linear Inverse Problems with Multiple System Matrices and a Single Observation

Vector. Siam J Sci Comp, In Review, 2008.
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Chapter 4 studies three algorithms for solving linearized systems of RF waveform de-
sign equations for calculating accelerated spatially-tailored excitations on parallel excitation
MRI systems. Their artifact levels, computational speed, and RF peak and root-mean-
square voltages are analyzed. A singular value decomposition (SVD) [50,51,118] inversion
method is compared to Conjugate Gradient Least Squares (CGLS) [62] and Least Squares
QR (LSQR) [100,101], two iterative algorithms designed to solve large linear systems. The
excitation pulses calculated using these methods are used in both Bloch simulations and
imaging experiments on an actual eight-channel parallel excitation array implemented on a
3T human scanner. Overall, experiments show that waveforms designed using LSQR and
CGLS have lower peak and RMS waveform voltages and produce excitations with fewer
artifacts than those generated by the SVD-based method. This work resulted in a journal

article, conference paper, and patent:

e A. C. Zelinski, L. L. Wald, K. Setsompop, V. Alagappan, B. A. Gagoski, V. K. Goyal,
F. Hebrank, U. Fontius, F. Schmitt, and E. Adalsteinsson. Comparison of Three
Algorithms for Solving Linearized Systems of Parallel Excitation RF Waveform De-
sign Equations: Experiments on an Eight-Channel System at 3 Tesla Concepts Magn
Reson, Part B: Magn Reson Eng, 31B(3):176-190, Aug. 2007.

e A. C. Zelinski, L. L. Wald, K. Setsompop, V. Alagappan, B. A. Gagoski, F. Hebrank,
U. Fontius, F. Schmitt, and E. Adalsteinsson. RF Pulse Design Methods for Reduc-
tion of Image Artifacts in Parallel RF Excitation: Comparison of 3 Techniques on
a 3T Parallel Excitation System with 8 Channels. In Proc. Int. Soc. for Magnetic
Resonance in Medicine (ISMRM), page 1686, Berlin, Germany, 2007.

o A. C. Zelinski, E. Adalsteinsson, K. Setsompop, L. L. Wald, and U. Fontius. Method
for designing RF excitation pulses in magnetic resonance tomography. US Patent

7336145, issued February 26, 2008.

Chapter 5 uses MSSO theory to develop a sparsity-enforcement algorithm that jointly
determines quickly-traversable excitation k-space trajectories along with corresponding ex-
citation pulses. The proposed method lets users specify a desired 3-D spatially-tailored
and spatially-selective excitation and then generates a pulse and trajectory explicitly opti-

mized for the task at hand. The algorithm functions by applying an £1-norm penalty while
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searching over a large number of possible trajectory segments (and corresponding RF pulse
segments); this process ultimately reveals a small, sparse subset of trajectory and pulse seg-
ments that alone form a high-fidelity version of the desired target excitation. The method
is general: it applies to conventional single-channel as well as emerging multi-channel par-
allel transmission systems, and also to a variety of 2-D and 3-D k-space trajectories. After
mathematically developing the joint pulse-trajectory design technique, we use it to design
single-channel slice-selective pulses that mitigate B inhomogeneity in the human brain at
7 Tesla and eight-channel pulses that produce highly-structured excitations at 3 Tesla, and
single-channel 2-D spiral-trajectory pulses. Overall, this body of work led to two journal

articles, a pending patent, and four conference abstracts:

o A. C. Zelinski, L. L. Wald, K. Setsompop, V. K. Goyal, and E. Adalsteinsson.
Sparsity-Enforced Slice-Selective MRI RF Excitation Pulse Design. IEEE Trans Med
Imag, In Press, 2008.

o A. C. Zelinski, L. L. Wald, K. Setsompop, V. Alagappan, B. A. Gagoski, V. K. Goyal,
and E. Adalsteinsson. Fast Slice-Selective RF Excitation Pulses for Mitigating Bf’
Inhomogeneity in the Human Brain at 7T. Magn Reson Med, 59(6):1355-1364, June
2008.

o A. C. Zelinski, E. Adalsteinsson, V. K. Goyal, and L. L. Wald. Sparsity-Enforced
Joint Trajectory and RF' Ezcitation Pulse Design. US Patent Pending, Internal Case
No. MGH 3726 / MIT 13074, 2008.

o A. C. Zelinski, V. K. Goyal, E. Adalsteinsson, and L. L. Wald. Sparsity in MRI
RF Excitation Pulse Design. In Proc Conf Information Sciences and Systems, pages

252-257, Princeton, NJ, March 2008.

e A. C. Zelinski, K. Setsompop, V. Alagappan, V. K. Goyal, L. L. Wald, and E. Adal-
steinsson. In Vivo Bf” Inhomogeneity Mitigation at 7 Tesla Using Sparsity-Enforced
Spatially-Tailored Slice-Selective Excitation Pulses. In Proc. Int. Soc. for Magnetic
Resonance in Medicine (ISMRM), page 620, Toronto, Canada, 2008.

o A. C. Zelinski, V. K. Goyal, L. L. Wald, and E. Adalsteinsson. Sparsity-Enforced
Joint Spiral Trajectory & RF Excitation Pulse Design. In Proc. Int. Soc. for Magnetic
Resonance in Medicine (ISMRM), page 1303, Toronto, Canada, 2008.
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e A. C. Zelinski, K. Setsompop, V. K. Goyal, V. Alagappan, U. Fontius, F. Schmitt,
L. L. Wald, and E. Adalsteinsson. Designing Fast 3-D RF Excitations by Optimiz-
ing the Number, Placement, and Weighting of Spokes in k-Space via a Sparsity-
Enforcement Algorithm. In Proc. Int. Soc. for Magnetic Resonance in Medicine

(ISMRM), page 1691, Berlin, Germany, 2007.

Chapter 6 confronts a subset selection problem that arises when a parallel excitation
system has more transmit modes available than hardware transmit channels with which to
drive them. Here we show the applicability of MSSO theory and propose a fast target-
dependent sparsity-enforced subset selection algorithm that explicitly accounts for the de-
sired excitation pattern when choosing the mode subset, in contrast with principal com-
ponent and covariance analysis methods that only use the spatial profiles of the transmit
modes and thus determine only a single mode subset for all excitations. In one simulated
experiment, the proposed fast algorithm actually finds the optimal solution to the under-
lying NP-Hard combinatoric subset selection problem. This work appeared at a conference

and is also undergoing patent processing:

o A. C.Zelinski, V. Alagappan, V. K. Goyal, E. Adalsteinsson, and L. L. Wald. Sparsity-
Enforced Coil Array Mode Compression for Parallel Transmission. In Proc. Int. Soc. for

Magnetic Resonance in Medicine (ISMRM), page 1302, Toronto, Canada, 2008

e A.C. Zelinski, L. L. Wald, V. Alagappan, V. K. Goyal, and E. Adalsteinsson. Sparsity-
Enforced Coil Array Mode Compression for Parallel Transmission. US Patent Pend-
ing, Internal Case No. MGH 3673 / MIT 13014, 2008.

Chapter 7 investigates the behavior of whole-head and local SAR as a function of
trajectory acceleration factor and target excitation pattern due to the parallel transmission
of spatially-tailored excitations at a high field strength of 7 Tesla. Finite-difference time-
domain simulations in a multi-tissue head model are used to obtain Bfr and electric field
maps of an eight-channel transmit head array. Local and average SAR produced by 2-D
spiral-trajectory excitations are examined as a function of trajectory acceleration factor
and a variety of target excitation parameters when pulses are designed for constant root-
mean-square excitation pattern error. To rapidly calculate local SAR, we develop a fast

algorithm with a small memory footprint. Mean and local SAR are shown to vary by orders
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of magnitude depending on acceleration factor and excitation pattern, often exhibiting
complex, non-intuitive behavior. Furthermore, we find that the ratio of local to global SAR
is often large, which implies that local SAR, rather than global SAR, is the limiting factor
of eight-channel parallel transmission at 7T. These results suggest that the validation of
individual target patterns and corresponding pulses is necessary to enable routine clinical
use of parallel transmission systems. This project culminated in a journal article and two

conference papers:

e A. C. Zelinski, L. M. Angelone, V. K. Goyal, G. Bonmassar, E. Adalsteinsson, and
L. L. Wald. Specific Absorption Rate Studies of the Parallel Transmission of Inner-

Volume Excitations at 7 Tesla. J Magn Reson Imag, In Press, 2008.

e A. C. Zelinski, L. M. Angelone, V. K. Goyal, G. Bonmassar, E. Adalsteinsson, and
L. L. Wald. Specific Absorption Rate Studies of the Parallel Transmission of Inner-
Volume Selective Excitations at 7 Tesla. In Proc. Int. Soc. for Magnetic Resonance

in Medicine (ISMRM), page 1315, Toronto, Canada, 2008.

e A. C. Zelinski, V. K. Goyal, E. Adalsteinsson, L. L. Wald. Fast, Accurate Calculation
of Maximum Local N-Gram Specific Absorption Rate. In Proc. Int. Soc. for Magnetic
Resonance in Medicine (ISMRM), page 1188, Berlin, Germany, 2008.

Chapter 8 proposes several ways to reduce the maximum local SAR produced by
parallel excitation pulses, since Chapter 7 shows that local SAR is a major safety concern of
such pulses. We first pose a linear-algebraic formulation to evaluate whole-head or local Ng
SAR, showing that local Ng SAR at any location may be computed using a highly-sparse,
redundant block-diagonal matrix; this generalizes the mean-SAR matrix given in [168].
We then introduce a method to explore excitation fidelity, mean SAR and pulse duration
tradeoffs, pose a constrained optimization problem that ensures local Ng SAR meets certain
constraints, and discuss the computational implications of such an optimization. This work

appeared as two conference articles:

o A. C. Zelinski, K. Setsompop, V. Alagappan, B. A. Gagoski, L. M. Angelone, G. Bon-
massar, U. Fontius, F. Schmitt, E. Adalsteinsson, and L. L. Wald. Pulse Design
Methods for Reduction of Specific Absorption Rate in Parallel RF Excitation. In

29



Proc. Int. Soc. for Magnetic Resonance in Medicine (ISMRM), page 1698, Berlin,
Germany, 2007.

e A. C. Zelinski, V. K. Goyal, L. M. Angelone, G. Bonmassar, L. L. Wald, and E. Adal-
steinsson. Designing RF Pulses with Optimal Specific Absorption Rate (SAR) Char-
acteristics and Exploring Excitation Fidelity, SAR, and Pulse Duration Tradeoffs. In
Proc. Int. Soc. for Magnetic Resonance in Medicine (ISMRM), page 1699, Berlin,
Germany, 2007.

Chapter 9 also focuses on SAR-reduced parallel transmission, introducing the novel
concept time-multiplexing a set of pulses that each produce approximately the same exci-
tation pattern yields a lower maximum local SAR than does transmitting any individual
pulse over many repetition times. We then present an algorithm for determining the op-
timal multiplexing scheme (in the lowest maximum local SAR sense) when given a set of
candidate pulses, demonstrating the technique via simulations of a 7-Tesla eight-channel

parallel transmission system. We plan to submit this work to the following journal:

o A. C. Zelinski, V. K. Goyal, and E. Adalsteinsson. Reduction of Maximum Local
Specific Absorption Rate via Pulse Multiplexing. J Magn Reson Imag, In Preparation
for Submission, 2008.

Chapter 10 summarizes the contributions this thesis makes to the MRI and sparse
approximation communities and outlines directions for future research.

Manuscript structure. Applied mathematicians interested in the general MSSO prob-
lem should read the background on sparse approximation given in Chapter 2 and then turn
their attention to Chapter 3. The MRI applications and methods that rely in part on MSSO
theory and algorithms are located in Chapter 5 and Chapter 6. MRI excitation pulse de-
signers will be most interested in Chapter 5 (and to some extent, Chapter 6), whereas RF
safety researchers interested in the study and reduction of SAR due to parallel transmission

should refer to Chapter 7, Chapter 8, and Chapter 9.
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Chapter 2

Background

2.1 Magnetic Resonance Imaging

Here we provide an overview of magnetic resonance imaging (MRI). While comprehensive
descriptions of MRI may be found in, e.g., [12,89], what follows is a brief introduction to
the modality to provide adequate context for discussing MRI excitation pulse design. The
most important concept to take away from this chapter is how pulse design, under a linear
approximation, involves choosing to deposit energy along a 1-D contour in a continuous,

3-D, Fourier-like “k-space” in order to form a desired excitation in the spatial domain.

2.1.1 System Overview

Fig. 2-1 depicts a prototypical MRI system that consists of:

e A strong magnetic main field that in most cases is generated by driving a large DC
current through superconducting coils. This field, referred to as “By” (and of strength
By in units of Tesla), is directed from the feet to the head and defines the spatial z
axis. When a subject is placed within the bore of the magnet, a small proportion of
hydrogen atoms (H*) within the subject transition into a steady state, aligning fully
with By and precessing at the Larmor frequency, wg = vBg (rad/sec), where v is the
gyromagnetic ratio, a known physical constant (Hz/T). The gyromagnetic ratio of H* is
42.576 MHz/T.

o A set of gradient coils that are able to impart controlled spatially-linear variations

(gradients) on the z-directed By field as a function of z, y, or z when driven with
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Figure 2-1: Cutaway view of a prototypical MRI scanner. The system’s main field,
By, is oriented along the spatial z axis (directed from the feet to the head). In the steady
resting state, nuclear spins within the subject align with this main field and precess at
the Larmor frequency, wy = yBp (rad/sec). [Image (©2008 National Magnetic High Field
Laboratory, Tallahassee, FL, USA. Used with permission.]

the proper currents. The continuously-valued gradient waveforms are denoted G(t) =
[Gx(t), Gy(t), G, (t)]T, where T is the vector transpose, and are typically in units of
mT/m. The amplitude and slew rates of these waveforms are limited by hardware switch-
ing time and amplitude constraints. We will show shortly that these constraints limit
the speed at which we may traverse a contour through excitation k-space and thus are

an impediment to designing short-duration pulses.

o A radio-frequency transmission coil whose field is oriented perpendicularly to the static
main field and tuned to the Larmor frequency. This coil is able to influence nuclear spins
in the subject when driven by an RF voltage waveform, b(t), or a current waveform,
a(t), placed on top of a carrier waveform. In almost all cases, a quadrature coil [126]
is employed: one that is able to influence both the x and y components of the effec-
tive magnetic field simultaneously. We use complex variables to represent these two
orthogonal components at each instant in time, which allows us to treat b(t) and a(t) as
complex-valued time-varying signals.

o A reception coil that is able to detect, by induction, precessing transverse components of
spins that have deviated from the steady state. Transverse components are the compo-
nents of spins that lie in the (z,y) plane orthogonal to the spin component along the z

axis. Reception hardware is often integrated directly with the transmission coil.
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e A digital interface that is able to send trains of waveform samples to the gradient and
RF coils, and that is also able to sample and store inductive signals sensed by the receive

coil.

2.1.2 Larmor Precession and an Illustrative Thin-Slice-Imaging Example

Now let us consider an imaging scenario where our goal is to image the density of protons
within a thin slice of the subject’s brain. To begin, a subject lies motionless within the
scanner; at all locations, proportions of magnetic spins align with 2, yielding net magne-
tizations solely along the z axis. The gradient coils are dormant, and the reception coil,
only capable of detecting transverse (non-z-directed) components of oscillating spins, senses
only thermal noise. Suddenly, a specially-crafted RF pulse is sent through the transmission
coil along with a judiciously-chosen set of gradient waveforms. The pulse excites only those
spins within a thin slice of tissue within the subject’s brain, most often only those spins
within (29 —0/2, 20+ 6/2), producing a single-slice ezxcitation. Spins within this §-mm-thick
slice are tilted away from their steady-state z-directed position, while those outside the slice
are left in perfect alignment with the main field. Assume here that spins within the slice are
all tilted uniformly by a small angle; e.g., by 30 degrees at all (z,y, z = 20 + §/2) locations.
These small-tip-angle spins precess at the Larmor frequency, rotating around the z axis at
the angular rate wy, all while returning to the z-directed steady state position.

We note here that spatial flip-angle uniformity during excitation is crucial: if spins are
tilted non-uniformly across space, the intensity and contrast of the resulting image will
no longer correspond to the actual density of underlying spins and the image will contain
contrast and SNR non-uniformities that erode its diagnostic quality.

The transient behavior of a prototypical excited magnetic spin is illustrated in Fig. 2-2.
The rate at which the spin’s z-component recovers is modeled well by an exponential time
constant, denoted T1, and the rate at which its transverse components decay is modeled
well by an exponential time constant denoted Ts. These constants depend on tissue type
as well as field strength, e.g., white brain matter has T; ~ 780 ms and Ts ~ 80 ms when
By = 1.5 Tesla [12].

As the transverse components decay, they induce a current in the receive coil; this is
referred to as free induction decay (FID). During this brief time, the system enables its

analog-to-digital converter and samples the FID signal, s(t). The Fourier transform of
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Figure 2-2: Larmor precession and spin recovery. A spin is excited by an RF pulse
and tilted away from the z axis. After the transmission of the pulse, it then returns to its
steady-state position, precessing at a rate wp = yBy when in the presence of a main field
of strength By. The rate at which the longitudinal 2 component recovers, and at which
the transverse components decay, is modeled well by the tissue-dependent exponential time
constants T and Ts. Here, the spin has only been tilted by a small angle away from z; this
is called small-tip-angle excitation.

this waveform is then computed, but because all spins within the thin slice of tissue have
precessed at wp, no spatial information is obtained: the magnitude of the Fourier component
corresponding to wp simply indicates the density of excited spins within the entire slice. The
receive coil has done little more than provide us with the integral of all detectable spins;

only the “DC” component of the image we wish to generate has been determined.

What must be done to produce a useful spatial image of spin proportions within the
thin slice? The late Paul Lauterbur conceived of the solution [87]: induce a gradient along
the main field during the excitation process and make spins at different spatial locations
precess at different rates; this lets the readout coil observe a signal with a spread of frequency
components, each corresponding to spin proportions at a particular point in space. Consider,
for example, applying a gradient of magnitude G, such that the z-directed By field varies
with z, i.e., B(z) = Bo+xG,. Now a spin at z precesses at rate w(z) = vB(z) after applying
the RF pulse, rather than simply at rate wp. The signal observed by the readout coil is now
comprised of various significant frequency components whose magnitudes provide spatially-
dependent spin density information. Extending this process to two dimensions (using both
z and y gradients) permits the readout and reconstruction of a 2-D image whose intensity

at (z,y) corresponds with the density of spins at (z,y, 20 + §/2).

The scenario outlined above—namely, exciting a thin slice of tissue—is referred to as
“thin-slice excitation” and is the predominant type of MRI excitation conducted today. This

type of excitation dominates the field because it simplifies the readout stage by permitting
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the system to record and reconstruct an image from only two dimensions of data. One topic
that has not yet been explained in this subsection is how to design an RF pulse that uni-
formly excites spins within only a thin slice of tissue. The creation of such spatially-selective,
spatially-tailored pulses is the focus of our work. The design problem is essentially one of

choosing G(t) and b(t) such that spins across (z,y, 2) undergo a user-defined excitation.

2.1.3 The Bloch Equation

Let us now back away from the illustrative example and simply consider a cluster of many
magnetic spins within a tiny voxel centered about r = [z,y,2]T in space. Here we will
employ vector notation to differentiate between field and spin components along the z, y,
and z axes; to begin, let x, y, and z be unit vectors along these respective axes, and let
us neglect the effect of the time constants T; and Ta. The discussion here is largely based

upon Ch. 5 and Ch. 6 of [98] and Sec. 1 of [102].

In the absence of a main field, the many spins within the voxel are oriented at random,
and the net magnetizations along each axis, Mz (r), My(r), and M,(r), are essentially zero.
We may represent these with a vector: M(r) = [My(r), My(r), M,(r)]T. An inductive coil
that is able to detect transverse components will thus observe no significant magnetization

along the z and y axes.

However, in the presence of the z-directed main field By = Byz, a fraction of the mag-
netized spins aligns with this field, creating a non-zero magnetized equilibrium component
along z, denoted Mp. But because the many spins in the tiny voxel that do not align
with the main field still have random orientations, the net magnetization along xz and y
remains zero and spins within the tiny voxel remain undetected by the reception coil. In
this situation, M(r) = Mpz.

Now let us apply a time-varying excitation pulse through the transmission coil, injecting
the following circularly-polarized signal into the RF coil: By(t) = Bi(t)e 9“0, where B (t)
may be viewed as a complex-valued modulation term (a waveform with both magnitude and
phase) and wy as a carrier frequency. This RF signal influences the z and y components
of the overall magnetic field at r and impacts a small fraction of the magnetic spins in
the region of interest. If we consider a reference frame that rotates about z at angular

velocity w = B, the net magnetic spin components obey the following continuous-time
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three-dimensional differential Bloch equation [14]:

dM(r, t)

= YM(r,t) x B(r,t) — w x M(r,t), (2.1)

where X is the vector cross product, B(r,t) is the magnetic field at r (in this case equal to
Bg + Bi(t)), and the rightmost term accounts for the rotation about z. Essentially, (2.1)
describes how the components of the magnetization vector M evolve over time due to the
application of the RF pulse in the presence of the main field (hence M’s new dependence
on time) [98].

Now assume we drive each gradient coil with a time-varying waveform to modulate the
z component of the magnetic field at r. We express the gradient as the vector G(t) =
Gz (t)x + Gy(t)y + G.(t)z, so at location r and time ¢ its impact on the magnetic field is
(G(t) 1)z = [0,0,G. ()T + Gy(t)y + G, (t)2]T, where - is the vector dot product. Thus the
overall effective field at r and time ¢ becomes B(r,¢) = By + B1(t) + (G(t) - r) z, and (2.1)

becomes:
Mz(r,t) 0 G(t)-r —DBiy(t) My(r,t)
% My(r,t) | =7 —G(t)-r 0 By . (t) My(r,t) | (2.2)
MZ(I‘, t) Bl,y(t) *Bl,:v(t) 0 Mz(r, t)

where B ;(t) and B 4(t) are the demodulated orthogonal time-varying real-valued compo-

nents of the applied RF field that are produced by the quadrature transmission coil [102].

2.1.4 Time Constant Equations

Before studying (2.2), here we simply note the behavior of M(r,¢) when Ti(r) and Ts(r)
are accounted for. Assuming that an excitation pulse is applied prior to time ¢ = 0 and
ends at t = 0, the longitudinal component returns to its equilibrium state based on T;(r)

as follows:

M, (r,t) = M,(r,07)e ™ T10) 4 My(r)(1 — e /T2y, (2.3)

where M, (r,0") is the value of the Jongitudinal component immediately after the excitation
pulse has finished being transmitted. If we represent the transverse components M(r,t)

and M,(r,t) via the complex-valued variable m(r,t) = My(r,t) + jMy(r,t), then the rate
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of decay of the transverse components is governed by Ta(r) as follows:
m(r,t) = m(r,0t)et/ T2()g—dwr)t, (2.4)

This is a decaying complex-valued sinusoid. Here, w(r) = vB(r) and B(r) is simply the
z-directed magnetic field strength at location r. The main point here is that after exciting

a desired region, the transverse components decay away as modeled by Ts.

2.1.5 The Small-Tip-Angle Assumption and Excitation k-Space

We now continue our study of the expanded Bloch equation given in (2.2). Let us assume
that the RF energy deposited by the system tilts the z component of the net magnetization
by only a small angle at location r and thus M,(r,t) & My, the latter being the original
constant longitudinal steady-state net magnetization when only the main field is active.
Imposing this assumption decouples the third component of (2.2) from the other two.! If
we define the transverse magnetization as a complex-valued variable m(r,t) = M,(r,t) +
JjMy(r,t) and the applied RF pulse as the complex-valued time waveform b(t) = By 4(t) +
JB1y(t), then according to Pauly et al. [102], the z and y components of (2.2)—those
components visible to the reception coil—may be structured as a single complex-valued

differential equation:
m(r,t) = —jv(G(2) - r) m(r,t) + jvb(t)My. (2.5)

Recalling that in the steady-state M(r) = Mgz, and imposing this as an initial condition
(i-e., that m(r,0) = 0), Pauly et al. solve (2.5) to yield the final magnetization at time
L [102]:
L L
m(r,L) =m(r) = j’}’Mg/ b(t) exp (—j'yr . / G(s)ds) dt (2.6)
0 t

This is the core equation that motivates the interpretation of RF pulse design as depositing

energy in excitation k-space (a spatial frequency domain) to tailor the resulting magneti-

1t is worth noting that it has been empirically shown that this assumption holds extremely well for up
to a 60-degree tip angle and approximately for up to a 90-degree angle, breaking down for flip angles nearing
180 degrees [102].
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zation m(r) in a desired way. To see this, define k(t) as follows [102]:

L
k(t) = —'y/t G(s)ds, (2.7)

and then substitute (2.7) into (2.6) to obtain:

L
m(r) = jMy /0 b(t) exp (jr - k(t)) dt. (2.8)

This results in a striking change: (2.8) is now simply a 3-D Fourier transform to within a

multiplicative constant.

One may interpret (2.8) as follows: k(t) is a 1-D contour that traces through a 3-D
continuous spatial frequency domain over time; RF energy as represented by the complex-
valued time-varying signal b(t) is deposited along this contour at different frequencies, and a
Fourier transform of this energy describes the approximate transverse magnetization pattern
arising in the spatial domain. We see too the explicit dependence of the trajectory on the
gradients: the negated remaining running time integral of G(t) from time ¢ to L determines
our location in k-space at time f. Because the gradient waveforms are driven by real
hardware, and because such hardware has its own amplitude, slew rate, and switching time
constraints, this means that the rate and extent to which we may traverse a contour through

k-space is itself constrained.

We see now that our desire to obtain short-duration excitation pulses (as discussed in
Ch. 1) is directly at odds with the gradient-related impediments on k-space traversal. This
is why the design of efficient, short trajectories through k-space (and RF waveforms to
accompany them) remains an open, high-impact problem even nearly 20 years after Pauly

first proposed excitation k-space.

2.1.6 Data Readout and Image Reconstruction

We briefly alluded to post-excitation data readout and image reconstruction in the thought
experiment of Sec. 2.1.2. From here onward we will simply assume that if one forms a
high-fidelity version of the desired excitation, the readout stage is able to be accomplished.
There is a great deal of literature discussing MRI readout theory that details many styles

of data collection and image reconstruction, e.g., [12,89,98].
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Figure 2-3: Single-spoke slice-selective excitation example. A sinc-like RF pulse
segment is played over a period of time where the gradients are constructed such that the
trajectory proceeds through a straight line along the k, axis in excitation k-space. Due to
the small-tip-angle Fourier-like relation given in (2.8), this sinc-like energy along k, yields
a box-shaped excitation profile along z, i.e., it primarily excites only those spins within the
small region zg+4, such that m(z, y, z) is a constant positive value for z € (20—8/2, 20+6/2)
and zero otherwise.

2.1.7 Spoke-Trajectory Pulses for Thin-Slice Excitation

We now briefly revisit the thin-slice excitation discussion of Sec. 2.1.2 and focus on a class of
slice-selective pulses comprised of k-space trajectory segments that resemble sine cardinals
(sincs). We refer to these pulse segments as “spokes” [108,113,132] because as each is
played, its trajectory in k-space is a straight line. In the small-tip-angle regime, based
on the relation given in (2.8), a rectangle-like slice profile along the z axis is achieved by
placing a sinc-like RF pulse segment (a spoke) in the k, direction of excitation k-space. In
practice, a true sinc along k, is replaced by a finite-length, sinc-like waveform [113]. The
time-bandwidth product and k,-extent of the segment influence the thickness and transition
edges of the slice; such Fourier properties as well as others hold in this situation due to (2.8).
Single-spoke pulses. Fig. 2-3 provides a simple illustrative example of a one-spoke
pulse, the accompanying RF waveform, and the resulting transverse magnetization pattern.
The reason spoke-based pulses are effective at exciting thin slices is because they spend the
majority of their time (and deposit energy) throughout moderate-to-high k, frequencies,
which allows them to strongly influence the magnetization m(r) along the spatial 2 axis.
Multi-spoke pulses. Playing a single sinc-like spoke at (kz,ky) = (0,0) (DC) in k-
space is one way to excite a thin slice, and it is the traditional method of slice-selective

excitation. Depositing energy at a single frequency in (kz, ky), however, does not provide
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any ability to tailor the resulting in-plane (z,y) spatial excitation pattern when using a
single-channel excitation system; even with a multi-channel excitation system, significant
tailoring of the in-plane excitation is not possible with this approach. Thus in order to
strongly influence the in-plane excitation flip angle while simultaneously maintaining slice
selectivity, one must place a number of spokes at various locations in (k;, ky), modulating
the amplitude and phase of each to form a desired in-plane transverse magnetization; here,
the complex weightings in (ks, ky) form the in-plane excitation, while the sinc-encoded k;
traversals provide slice selectivity in z. Simultaneous slice selection and in-plane tailoring
are possible due to the separability of the 3-D Fourier transform in (2.8) that relates the
spatial excitation to the deposition of energy in k-space. Unfortunately, using multiple
spokes has the negative consequence of increasing pulse duration. Thus an ideal spoke-
based pulse is one that not only achieves the user-specified in-plane excitation, but does so
using as few spokes as possible. (We will confront this problem in Ch. 5 by using a sparse-

approximation-inspired technique to optimize spoke placements in the (k;, k,) plane.)

2.1.8 Spiral-Trajectory Pulses for Structured In-Plane Excitation
without Slice Selectivity

Now let us consider a different trajectory, one that spends all of its time spiraling within
the (kz,ky) plane and never travels away from k, = 0. No matter how much RF energy
we place along this trajectory, its energy deposition is simply a Dirac delta with respect
to k, frequencies, which means that its excitation along the spatial z axis will be nonzero
along z everywhere m(z,y) # 0. In other words, a 2-D spiral trajectory—as well as any
other trajectory that fails to deposit energy at nonzero k, frequencies—is incapable of
exciting spins within only a thin slice along z. The upside of spiral trajectory pulses (and
other 2-D trajectories) is that they are able to highly-structure the in-plane magnetization
m(z,y) because they travel out to and may deposit energy at moderate-to-high k; and
ky frequencies. Fourier properties hold here: for example, the radial spacing of the spiral
rings determines the extent to which aliasing may occur within the field of view, and the
maximum frequencies traversed by the spiral inherently limit the resolution of the excitation
we may form. When designing a spiral trajectory, one must account for these properties to
avoid aliased excitations or patterns too low in resolution.

Figure 2-4 illustrates a spiral trajectory, the gradients that implement the spiral, and
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Figure 2-4: Spiral-trajectory excitation example. The gradients and (k, k,)-space
trajectory are given, along with the RF waveform, b(t), deposited by the system as the
trajectory is traversed. Within the (z,y) plane, a highly-structured box forms (due to
energy placed at high k; and &, frequencies), but when viewing the resulting magnetization
along z, the pulse fails to excite spins within only a thin slice.

the pulse magnitude b(t) one may play along the trajectory to yield a highly-structured
box-shaped excitation in the (z,y) spatial plane, but due to the fact that no energy is

placed away from k, = 0, we see that there is no spatial selection in z.

2.1.9 Non-Idealities of Excitation: B; and Main Field Inhomogeneity

When the small-tip-angle approximation is applied to a realistic single-transmit-channel

system, we arrive at the following equation [102,146] rather than at (2.8):
L . .
m(r) = jyMyS(r) / b(t)eIABo@E-L) i k() gy — §(r)p(r). (2.9)
0

Notice that (2.9) is identical to (2.8) except for the presence of S(r) and e/ABo(r)(t=L)  Here,
m(r) is in radians, ¢ in seconds, and v in rad/T/s. The implicitly defined term, p(r), will
be discussed shortly.

Spatial transmit B; profile. The first new variable, S (r), is complex-valued, varies
across space, and is referred to as the spatial transmit profile of the transmission channel. In

other words, S(r) is essentially a spatial basis function that conveys how capable the coil is
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Transmit Profile, |S(r)|

Figure 2-5: Single-channel system spatial Bf' transmit profile in a water phantom
at 7T. |S(z,y, 20)| is depicted in units of n'T/V, varying significantly with r due to the By
inhomogeneity phenomenon. It will be difficult to produce a uniform flip angle across space
within a thin slice without using a sophisticated pulse (e.g., a multi-spoke pulse).

at exciting spins across space. For example, if S(r) = 0, then the transmit coil is incapable
of tilting spins at r. Here, S(r) is in units of T/V.2 The true term for S(r) is “Bf” map”,
“Bf profile”, or “Bj (r)”, but we use S(r) to avoid confusion with the system’s reception
profile, denoted B; , and to simplify notation.

By main field inhomogeneity. The second new variable, ABy(r), is a field map of
By inhomogeneity in radians/second. Essentially, the system’s main field is never perfectly
equal to By everywhere. When considering this non-ideality from a k-space perspective, it
causes a phase accrual over time at each location r, which is handled by the e/ABo(®)(t—L)
term in (2.9). A main field inhomogeneity map is easy to acquire on a modern system and
its phase accrual effect may be mitigated by simply incorporating it into the design process,
as will be detailed shortly. B; inhomogeneity is a significantly worse problem.

Nominal excitation. The implicitly defined term of (2.9), p(r), is the nominal ezcita-
tion that forms before accounting for S(r). In other words, p(r) is the excitation that would
form across space if S(r) =1 for all r.

Detrimental effect of B;" inhomogeneity at high field. At high magnetic field
strengths, where By inhomogeneity [16] is severe, S(r) will vary significantly with r [29,

133,136]. For example, Fig. 2-5 shows the in-plane |S(x,y,20)| that arises when a water

2If a current waveform a(t) were substituted for the voltage waveform b(t) in (2.9), S(r) would be in
units of T/A.
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phantom (an anthropogenic object used for test imaging) is placed in a 7 Tesla scanner.
When a low-flip-angle pulse is transmitted on a high-field system, its nominal excitation,
p(r), is multiplied (pointwise) by the inhomogeneous S(r) to yield the actual magneti-
zation, as given in (2.9). Applying a standard one-spoke slice-selective excitation, where
|p(z,y,20)] = 1, thus results in a non-uniform in-plane flip angle magnitude, equal to
|S(z,y, z0)p(z,y,20)| = |S(x,y,20)|- This is extremely detrimental because a non-uniform
flip angle across space causes all resulting images to have unwanted contrast and SNR
variations across space, limiting their diagonistic quality.

In contrast, an ideal mitigation pulse produces a nominal excitation p(r) such that
|S(r)p(r)| is constant for all r in some region of interest, i.e., the ideal |p(r)| equals the
pointwise inverse of S(r), denoted |S(r)|™!, to within a multiplicative constant. This pulse
is ideal in the sense that it mitigates the magnitude of the inhomogeneity; it does not
impose phase uniformity because the latter is not stringently required in most clinical
imaging applications.

Recalling that thin-slice uniform excitation is fundamental for most imaging schemes, we
see that in order to achieve such an excitation in the presence of inhomogeneity, one must not
only place energy throughout moderate-to-high &, frequencies to be selective about z = zg,
one must also judiciously place energy throughout (kz, ky) to tailor the nominal excitation
to mitigate the inhomogeneous in-plane S(x,y,z = 29). In Ch. 5, we will enable high-
field imaging by implementing sparse approximation techniques that design short-duration

thin-slice Bf' -mitigation pulses.

2.1.10 Single-Channel Excitation Pulse Design

We now outline a spatial-domain-based method to design an excitation pulse to achieve a
desired excitation d(r) across space. This method accounts for S(r) and thus may be able to
mitigate inhomogeneity in certain spatial regions if the trajectory covers the proper spatial
frequencies. The approach here is largely due to [146].

Assumptions. First we assume that S(r) and ABg(r) are known at all points r within
a particular region of interest, called the field of excitation (FOX). Further, let the gradient
waveforms, G(t), be fixed, which in turn fixes the trajectory through k-space, k(t), due to

the latter’s linear dependence on the former as given in (2.7).
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Discretization. We now discretize (2.9) by sampling space at locations ry,...,ry,
within the FOX and sampling time at ¢3,...,tn, € [0, L]; the ¢; are spaced uniformly by
A;. This yields

m = SFb = Ab (2.10)

Here, S € CNs*Ns js 5 diagonal matrix comprised of N, samples of the spatial profile S(r)
taken within the user-defined FOX. The next matrix, F € CY+*¥: brings energy placed
in k-space into the spatial domain at the N, locations where the coil profile is sampled
within the FOX. Formally, F(m,n) = jyMoA;e/2Bo(Fm)(tn=L) gitmk(tn)  Finally, b € CM is
comprised of samples of the RF waveform, b(t), spaced by A; [146].

To within aliasing constraints, users are free to choose how finely to sample the spatial
and temporal variables in (2.9) and thus control whether m = Ab is underdetermined or
overdetermined [80,146]. Furthermore, by sampling r only within the FOX, (2.10) becomes
blind to the excitation that forms outside of the desired FOX and is thus freed from needless

spatial constraints.

Conventional pulse generation. To excite a pattern d(r), we must determine an
RF pulse to play through the transmit coil. To do this, one may form N samples of the
desired pattern into the vector d € C"s and create a pulse that (approximately) achieves
the desired excitation by solving

d = SFb (2.11)

for b. We might solve (2.11) via direct inversion (or pseudoinversion) of SF, or perhaps

instead solve a Tikhonov-regularized problem [123,124] that penalizes the £5 energy of b:
min {f|d ~ SFb|3 + 6kl b3}, (2.12)

where & is a small nonnegative regularization term. After solving (2.11) in some manner,
we may extract the time samples of the pulse from b and play the pulse through a Bloch-
equation simulator or the actual system. If (2.11) is solved accurately, the small-tip angle
approximation is valid, and the SNR is sufficient, then the excitation that forms will resemble

the target pattern, d(r).
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Figure 2-6: Profile magnitudes of an eight-channel 3-Tesla parallel excitation
MRI system. Here the magnitudes of the Sp(r)s are depicted for p = 1,...,8; samples
of each Sp(r) may be taken within the nonzero region of influence (the chosen FOX) and
stacked into the diagonal matrix S,. Across space, the Sp(r)s are not orthogonal—their
regions of influence overlap each other to some extent.

2.1.11 Multi-Channel Parallel Excitation Pulse Design

Recently, systems have emerged whose transmit coils are comprised of P > 1 elements, each
capable of independent, simultaneous transmission, e.g., [58,79,113,130,168,169]. Because
each of the P transmission elements has its own corresponding spatial transmit profile,
denoted Sp(r), and assuming the small-tip-angle assumption still holds, (2.9) extends as

follows:

P L . .
m(r) = jyMo ) _ Sp(r) / by (t)e?AB(F) (L) T k(®) gy (2.13)
p=1 L

where by(t) is the RF pulse played along the transmission coil’s pth channel (V) [59]. If
the gradients here are the same as in (2.9), the trajectory k(¢) remains the same, but
now there are P energy weightings being deposited along it; the pth weighting produces
an excitation in the spatial domain (impacted by Sp(r)) and the superposition of the P
individual excitations yields the overall excitation.

Multi-channel system transmit profiles. Fig. 2-6 depicts the coil profile magnitudes
of an eight-channel system within an oil phantom at 3 Tesla. Spatially, the Sp(r)s are not
orthogonal—their regions of influence overlap each other to some extent. If the strength of
the main field is increased, the Sp(r)s will exhibit increased variation.

Conventional parallel pulse generation. Here we summarize the design method
of [59]. Other pulse design approaches that rely on k-space but not the exact spatial-domain
discretization steps given here are those of Katscher et al. [79] and Zhu et al. [168,169].
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To begin, suppose we have a P-channel system and want to produce a desired excitation
d(r). Formally, let us seek b,(t)s in (2.13) such that the resulting m(r) is close in the £,
sense to d(r) for all r in a user-defined FOX. As in Sec. 2.1.10, a set of gradients is chosen
to traverse a contour in k-space that is considered useful. We then discretize (2.13) in space
at locations ry,rg,...,ry,, and uniformly sampled in time at t1,t2,. .., IN; (samples are

spaced by A;). This yields

m = S§;Fb; + ...+ SpFbp
b;
=[S;F---SpF] | : | = Atotbtot,
bp

(2.14)

where S, € CV+*Ns ig a diagonal matrix comprised of N, samples of Sp(r) taken within the
FOX. The next matrix, F € CY*Mt g an operator that brings energy placed in k-space
into the spatial domain at the N, locations where each coil profile is sampled and is identical

to the one given in Sec. 2.1.10. Finally, each b, € C™* contains samples of by(t) [59)].

A set of P RF pulses that (approximately) achieves the desired excitation may now be
generated by solving

d = Aot byos (2.15)

for biot, where d € CMs is constructed by sampling d(r). Solving (2.15) via Tikhonov

regularization is one way to find a well-conditioned solution by, i.e.,
Ig‘-tin {lld — Aotbrot[|3 + 8l|brotl|3}- (2.16)
ot

After solving the problem, samples of each of the P RF pulses may now be extracted from

biot, played through the P-channel system, and used to produce an excitation close to d(r).

Undersampling. The presence of multiple excitation elements allows one to under-
sample an excitation trajectory relative to a conventional Nyquist-sampled trajectory and
yet often still form a high-fidelity version of the desired excitation. Undersampling is greatly
beneficial: it reduces the distance traveled in k-space and thus the duration of the corre-

sponding pulse.

Unaccelerated vs. accelerated spiral-trajectory eight-channel design exam-
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ple. Fig. 2-7 illustrates details of the design process when generating parallel excitation
pulses to produce a 15-degree, 28-mm x 28-mm target box pattern with fixed in-box and
overall fidelity constraints. Spirals are “accelerated” by factors of R, which means that the
radial separation between spiral samples is increased R-fold relative to a Nyquist-sampled
R =1 design. The columns, from left to right, show design details for R = 1, 4, and 7
trajectories. The first and second rows depict the progressively-undersampled spiral trajec-
tories fed to the design algorithm in each case and the gradients of each trajectory. The
third row depicts the magnitude of the eighth channel’s RF pulse shape, |ag(t)|. (In the
interest of space, only one of the eight RF pulse shapes in each case is shown). Finally, the
bottom row shows the resulting excitations after Bloch-simulating the gradients and pulses;
each pattern has the same fidelity. As R increases, the pulses grow shorter in duration as
intended, and the eighth channel’s RF pulse changes greatly in both magnitude and shape.
The R = 7 pulse shape has a 100-times greater peak magnitude than the R = 1 pulse
shape, a natural consequence of the fact that with only an R = 7 spiral, there are very
few degrees of freedom remaining in k-space with which to form the excitation relative to
the Nyquist-sampled R = 1 spiral, which forces the system to drive the channel profiles
intensely with high-amplitude RF pulse shapes in order to form the desired pattern. This
makes intuitive sense: the lack of k-space freedom forces the system to rely heavily upon
its degrees of freedom in the spatial domain.

Relation to parallel readout. Parallel transmission is the excitation counterpart to
the concept of readout-side acceleration where the use of multiple reception coils permits
one to undersample readout-side data and substantially reduce readout time [106, 115];
the development of parallel transmission arrays has lagged behind that of multi-channel
reception arrays because unlike readout-side scenarios where adding an additional channel
is simplistic and low in cost, adding a transmit channel requires an expensive RF power
amplifier and adds greatly to the complexity of the MRI system’s online, real-time safety

monitoring hardware.

2.1.12 Signal Intensity Equations

Here we outline the intensity (i.e., magnitude) one observes in a reconstructed image at
location r that arises when one plays particular types of pulses through the scanner. These

equations will play a crucial role in the next subsection.
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Figure 2-7: Unaccelerated vs. accelerated spiral-trajectory parallel excitation
eight-channel pulse design example. Target pattern: 28-mm x 28-mm centered 15-
degree square pattern with fixed in-box and overall normalized root-mean-square error con-
straints. Left, middle, and right columns: design details for R = 1, 4, and 7 trajectories,
where R is the acceleration factor. Top row: progressively-undersampled spiral trajectories.
Second row: gradient waveforms. Third row: magnitude of the eighth channel’s RF pulse
shape, |ag(t)|. Bottom row: resulting excitations. As R increases, the pulses grow shorter
in duration as intended. The eighth channel’s RF pulse (along with the other seven pulses
that are not shown) change greatly in both magnitude and shape with increasing R due to
the loss of degrees of freedom in k-space.
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First, assume a standard one-spoke slice-selective pulse is repeatedly transmitted with
peak transmit voltage V' through a transmit coil’s pth channel with a fixed repetition time
(TR). During this process, we form an intensity image SI via a readout procedure referred
to as a gradient-recalled echo (GRE) [12,89,98]. In this scenario, the following holds:

1 — Ei(r, TR)
"1— Ei(r,TR) cos(Va(r))’

SI(r, V) =c- p(r) - | By (r)] - sin(Va(r)) (2.17)

where ¢ is a gain constant, p(r) is proton (HT) density, Ei(r,TR) = exp(~TR/Ti(r)),
and a(r) is the flip angle achieved at location r in rad/V [27,137]. We thus see how the
tissue relaxation parameter T7, peak voltage, and choice of repetition time impact image
intensity. The effect of Ty has been ignored, which is a reasonable assumption [98,137]. For

a standard pulse of duration 7, a(r) = v7|S,(r)| [27,137].

The final parameter of (2.17), |By (r)], is the dual of the |Sp(r)|s: it is the magnitude
of the system’s reception or receive profile3 Analogously to |S,(r)|, the receive profile will
exhibit significant spatial variation (inhomogeneity) on high-field systems. From (2.17),
we see that an inhomogenous |Bj (r)| indeed impacts SNR across space, but not image
contrast. In practice, its image shading effect is removed simply via pointwise division from

the resulting image SI.

Now assume we play a special-purpose magnetization reset pulse after the standard pulse

as detailed in [33]. This eliminates the denominator of (2.17), yielding
SI(r,V) =c- R(r) - (1 — E1(r,TR)) - sin(Va(r)) = g(r, TR) - sin(Va(r)), (2.18)

where R(r) = p(r)|B7 (r)| is the proton-density-weighted receive profile and g¢(r,TR) is
implicitly defined; this expression holds even for TR < T; [33].

Finally, consider a case where V is small enough such that Va(r) is small everywhere
and a reset pulse is not used; here, cos(Va(r)) ~ 1 and sin(Va(r)) =~ Va(r), causing the

(1 — E1(r,TR)) terms of (2.17) to cancel, resulting in the following image intensity:

SI{r,V)=c-V-R(r) - ar). (2.19)

3For the purposes of this thesis, the systems we use for experimentation have only one reception profile
regardless of how many transmit channels they may have.
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2.1.13 Transmit Profile, Receive Profile, and Flip Angle Map Estimation

Throughout the chapter we assumed that the single-channel system transmit profile, S(r),
and the multi-channel system profiles, the Sy(r)s, were known. In reality, these profiles
must be estimated. Here we first describe how to estimate S,(r) by collecting a series
of images and exploiting (2.18). Other transmit profile magnitude estimation methods
include [18,33,69,82,95,137]. We then describe a single-channel method to estimate R(r) =
p(r)|By (r)| and a(r) due to any excitation pulse,* a seemingly novel approach that we
introduced in [112,161,164].

Estimating the transmit profile magnitude [S,(r)|. If Bf inhomogeneity is not
severe, one may exploit (2.18) to obtain a(r) (and subsequently |S,(r)|) simply by collecting
two short-TR images using standard slice-select pulses with peak voltages V3 and V5, where
Vo = 2V; (using the reset pulse each time), dividing the magnitude of the second image
by the first (pointwise), and taking the inverse cosine [33,69]. This method relies on the
voltages being large enough such that the flip angle across the FOX is no longer in the
linear regime [i.e., such that sin(Vea(r)) # Va(r)]. Unfortunately, when inhomogeneity is
severe (e.g., in the human brain at By = 7 Tesla), the voltages V; and V; fail to produce
flip angles that fall outside of the linear regime across the entire FOX, and as a result the
double-angle procedure fails to produce a stable |Sy(r)| estimate at all spatial locations of
interest. Therefore we adopt a different approach: using a standard pulse followed by a
reset pulse each time, we vary V over a wide enough range to ensure that both low-flip
and high-flip angles are achieved at each spatial location r and collect N short-TR images.
For each r, we then fit the NV corresponding intensity samples to (2.18) in the least-squares
sense using the Powell method [103]; this obtains |Sp(r)| in T/V as well as g(r, TR). The Vs
are chosen such that, for each r, at least several of the N samples are in the large-tip-angle
regime [82,137].

Estimating the transmit profile phase Z(S,(r)). To estimate the phase of S,(r), we
keep V constant and collect one low-flip image and set Z(Sy(r)) equal to the phase of this
image. This yields phase relative to the system’s receive coil, which is sufficient [113,165].

Estimating the proton-density-weighted receive profile R(r) on a one-channel

system. Fitting the transmit profile as described yields not only |S(r)| but ¢(r, TR) as well.

“Estimating a(r) is critical in order to determine whether a non-standard mitigation pulse succeeds at
producing a uniform flip angle magnitude across space.
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However, obtaining the desired R(r) from ¢(r, TR) is non-trivial because the latter depends
on T; as seen in (2.18). Instead, we collect a low-flip image using a standard one-spoke
pulse (without using the reset pulse), averaging multiple times such that (2.19) holds and
SNR is large. We divide this image (pointwise) by a(r) = v7|S(r)| to obtain R(r) (to within
a multiplicative constant).

Estimating the flip angle map «(r) of any low-flip-angle pulse on a one-
channel system. The weighted receive profile, R(r), does not depend on the excitation
pulse. Exploiting this, we may estimate the flip angle map achieved by any pulse, even
a non-standard one such as a spoke-based mitigation waveform. First, we collect a low-
flip image using the pulse of interest (without using the reset pulse); the intensity of the
resulting image thus obeys (2.19). We then divide this image by the R(r) estimate to obtain
an estimate of the actual magnetization that arises when the pulse is played on the scanner

(to within a multiplicative constant).

2.1.14 Safety Concern: Specific Absorption Rate

Specific absorption rate (SAR) is defined as the average energy deposition in an Ng region
over an extended period of time due to the application of one or more radio-frequency (RF)
excitation pulses and is a major safety concern as discussed in Ch. 1. We briefly state the
equations that govern the “point SAR” that occurs at a single voxel r in space due to the
parallel transmission of ampere-valued pulse shapes a;(¢),...,ap(t) through a P-channel
system®% and the definition of local Ng SAR. Assume we know N; time samples of each
pulse shape spaced uniformly in time by A4, ie., for p = 1,..., P, we know apy(nl) for
n € {0,1,...,N; — 1}. Recall from (2.13) that L is the duration of each pulse shape and
thus L = N:A;.

Electric fields. For p = 1,...,8, assume we know E,(r) = [E, ,(r), E,,(r), E, .(r)]T
(V/m/A). Formally, E,(r) is the three-dimensional electric field (V/m) that arises at r
when a unit ampere waveform tuned to the Larmor frequency is driven through channel p.

Point SAR at location r. We calculate SAR (W/kg) at r by superimposing the
electric field produced by each transmit channel due to each time sample in the RF pulse

shape and then time averaging the net field’s squared magnitude over the repetition time

SHere we have used ap(t)s rather than b,(t)s, i.e., current waveforms rather than voltage waveforms; the
derivations here still hold if voltage waveforms are used with only a slight change in units.
51f one is concerned about single-channel system SAR, simply set P = 1 in this subsection.
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(TR) interval in which the pulse is played and weighting by the known conductivity and
density of that location [21,70,71]. The pulse shapes are transmitted from time 0 to L and
nothing is transmitted during the time interval (L, TR). Formally,

g TR aglr L
SARG) = g ke [ IBG0lBd = DI [CIBCOBa (@0

where D = % is the duty cycle, p(r) and o(r) are the density (kg/m3) and conductivity
(S/m) of the tissue at location r, and E(r,t) is the superposition of the electric fields
generated by each of the channels scaled by the waveform samples transmitted at each time
instant [168], i.e., .
E(r,t) =Y ap(t)Ep(r). (2.21)
p=1
Since we know discrete samples of the a,(t)s, we may approximately solve (2.20) via numeric

integration:

2

Ni—
Z”E(r nAy)|3 = U(r At Zap nA)E (2.22)

n(] p=1 9

SAR(r

Whole-head and local N-gram SAR. After obtaining SAR(r) for all r of interest
(e.g., all locations in a human head model), global SAR (also referred to as mean SAR) is
simply obtained by averaging the SAR(r) values. Likewise, Ng SAR at each r is obtained
by finding an N-gram cube around each r and then averaging SAR(r) over all r within the
cube, in line with [1]. (The FDA [21] and IEC [70,71] mandate averaging over cubes rather
than spheres.)

In Ch. 7, we will focus on the study of SAR produced by parallel transmission pulses.
In Ch. 8 and Ch. 9, we will propose and study methods to design SAR-reduced pulses.

2.1.15 SAR-Reduced Parallel Transmission

To conclude the MRI section of this chapter, we briefly summarize two recent branches of
work that have arisen that attempt to address and mitigate the SAR concerns of parallel

transmission by improving upon the pulse design process.

e /9 and £y, constraints on pulse samples. Because the vast majority of low-flip pulse design

algorithms generate a parallel excitation pulse by solving a linear system of equations (e.g.,
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[59,102,146,168)), a simple way to (indirectly) reduce SAR is to impose regularizations
while solving the linear system, constraining or reducing the root-mean-square or peak
amperages of the resulting pTX pulse [59,165]. This approach is simpler than those
below—rno knowledge of the local electric field generated by each transmit array element
is required—Dbut it does not guarantee a SAR decrease because pTX SAR does not scale
directly as a function of a pulse’s £2 and £, energies. (Only on a single-channel system

is SAR guaranteed to scale directly with ¢2 and ¢, pulse energies.)

o Explicit constraints on global and local SAR. An alternative, more extensive approach is to
explicitly build SAR constraints into the pulse design process. Because both whole-head
mean SAR and local Ng SAR at any location may be expressed quadratically in terms of
pulse sample values [56,57,158,168], constraints on both whole-head and local SAR may
be incorporated simply by adding quadratic constraints to the design algorithm [57,158].
For example, the algorithm of [57] explicitly accounts for global SAR as well as local SAR
at several spatial locations by incorporating several quadratic constraints into the design.
It requires knowledge of the local electric field generated by each transmit array element
per unit input, typically requiring FDTD simulations of a human body model. Examples

of work in this area include [55,57,68,134,139,142,158].

Other pTX SAR research. In addition to the pulse design improvements above,
other work involves the monitoring and tracking of SAR arising during a scan in real time
[28,54] and hardware-based SAR reduction by improving the efficiency and spatial encoding
capabilities of pTX arrays [5,6].

In Ch. 8, we will pose several SAR-reduced design approaches that were proposed along-
side [56,168], whereas in Ch. 9, we will introduce a novel approach to SAR reduction: time

multiplexing a set of similar pulses to reduce maximum local SAR.

2.2 Sparse Approximation Theory and Algorithms

2.2.1 Overview

Moving away from MRI, we now provide background about sparse approximation theory.
Over the past decade and a half, much work has been done on this topic; useful references

include [23,24, 31, 34, 37,41, 43,44, 52,93, 96, 107]. Fundamentally, the goal of sparse ap-
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proximation is to find a vector (or vectors) of unknowns with a small number of nonzero
elements such that a (linear) system of equations (approximately) holds. The base case
sparse approximation problem involves one known observation vector, a known system ma-
trix, and a single sparse unknown vector [24,52,107]; we will refer to this as the single-system
single-output (SSSO) problem. A generalization of the SSSO problem is the single-system
multiple-output (SSMO) simultaneous sparsity problem, where there are multiple unknown
vectors, a single system matrix, and a host of observation vectors [32,92,127,129]. The
background provided here on both SSSO sparsity and SSMO simultaneous sparsity will
be useful when we study multiple-system, single-output (MSSO) simultaneous sparsity in
Ch. 3; this novel linear inverse problem involves multiple unknown simultaneously sparse
vectors, but unlike SSMO, each such vector passes through a different system matrix and
the outputs of the various system matrices undergo a linear combination, yielding only one

observation vector.

2.2.2 Single-System Single-Output (SSSO) Sparse Approximation

Consider a linear system of equations d = Fg, whered € CM, F ¢ CM*N g c CV, and d
and F are known. It is common to use the Moore-Penrose pseudoinverse of F, denoted FT,
to determine g§ = F'd as an (approximate) solution to the system of equations. When d
is in the range of F, g is the solution that minimizes ||g||2, the Euclidean or £3 norm of g.
When d is not in the range of F, no solution exists; & minimizes ||g||2 among the vectors
that minimize ||d — Fg|2.

When a sparse solution is desired, it is necessary for the analogue to g to have only
a small fraction of its entries differ from zero. We are faced with a sparse approximation
problem of the form

mgin lg|lo subject to ||d — Fgll2 <, (2.23)

where ||-||o denotes the number of nonzero elements of a vector. The subset of {1, 2, ..., N}
where there are nonzero entries in g is called the sparsity profile. For general F, solving
(2.23) essentially requires a search over up to 2V — 1 nonempty sparsity profiles. The
problem is thus computationally infeasible except for very small systems of equations (e.g.,
even for N = 30, one may need to search 1,073,741,823 subsets). Formally, the problem is
NP-Hard [36,96].
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For problems where (2.23) is intractable, a large body of work supports a greedy search
over the columns of F to seek out a small subset of columns that, when weighted and
linearly combined, yields a result that is close to d in the £5 sense along with a sparse

g [23,31,37,93,96].
A second body of research supports the relazation of (2.23) to find a sparse g [24]:
min [gf; s.t. d — Fgll2 <e. (2.24)

This is a convex optimization and thus may be solved efficiently [17]. The solution of
(2.24) does not always match the solution of (2.23)—if it did, the intractability of (2.23)
would be contradicted—Dbut certain conditions on F guarantee a proximity of their solutions
[39,40,128]. Note that (2.24) applies an ¢; norm to g, but an £, norm (where p < 1) may
also be used to promote sparsity [24,52]; this leads to a non-convex problem and will not

considered in this disseration.

The optimization

min {3]d - Fell; + Algl:} (2.25)

has the same set of solutions as (2.24). The first term of (2.25) keeps residual error down,
whereas the second promotes sparsity of g [24,122]. As the control parameter, ), is increased
from zero to infinity, the algorithm yields sparser solutions and the residual error increases;
sparsity is traded off with residual error. Various methods may be used to solve (2.25), such
as iteratively reweighted least squares (IRLS) [77] (e.g., FOCUSS [52]), iterative shrinkage
[34,41,43,44], and second-order cone programming (SOCP) [17,92]. Throughout the rest
of this thesis, we will focus on formulations resembling (2.25) and its analogues rather than

(2.24).

It is important to understand that a problem of the form (2.25) may arise as a proxy
for (2.23) or as the inherent problem of interest. For example, in a Bayesian estimation
setting, (2.25) yields the maximum a posteriori probability estimate of g from d when the
observation model involves F and Gaussian noise and the prior on g is Laplacian. Similar
statements can be made about the relaxations of the simultaneous sparse approximation

problems posed in the following sections.
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2.2.3 Single-System Multiple-Output (SSMO)

Simultaneous Sparse Approximation

Let us now consider a generalization of the base-case SSSO problem where there are mul-
tiple unknown vectors, a single system matrix, and a host of observation vectors; the pth
observation vector arises by multiplying the single system matrix with the pth unknown
vector. The caveat here is that the system requires a simultaneously sparse set of vectors
as the solution, i.e., a set of vectors where only a small number of each vector’s entries
are nonzero, and where the vectors’ sparsity profiles (the locations of the nonzero entries)
are equivalent (or are promoted to be equivalent with an increasing penalty given other-
wise) [32,92,127,129]. We refer to this as the single-system multiple-output problem.
Formally, the single-system multiple-output (SSMO) problem consists of P observation

vectors (“snapshots”), all of which arise from the same system matrix:
d, =Fg,, forp=1,..., P, (2.26)

where d,, € CM is known for p = 1,..., P along with F € CM*N_ In this scenario, we
want to constrain the number of positions at which any of the g,s are nonzero. Thus we
seek approximate solutions in which the g,s are not only sparse, but the union of their
sparsity patterns is small; that is, a simultaneously sparse set of vectors is desired [92,127].
Unfortunately, optimal approximation with a simultaneous sparsity constraint is even harder
than (2.23).

Extending single-vector sparse approximation greedy techniques is one way to find an

approximate solution [32,129]. Another approach is to extend the relaxation (2.25) as

follows:”
. 2
min {} D - FGI} + AGls}, (2:27)
where D = [dy,...,dp] € CM*P G = [g;,...,gp] € CVN*F || - ||r is the Frobenius norm,
and

N

IGlls =

n=1

(2.28)

i.e., |G|ls is the £; norm of the £, norms of the rows of the G matrix.® This latter operator

"For P = 1, (2.27) collapses to the base case of (2.25).
8 Although here we have applied an ¢; norm to the £> row energies of G, an £, norm (where p < 1) could
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is a simultaneous sparsity morm: it penalizes the program (produces large values) when
the columns of G have dissimilar sparsity profiles [92]. Fixing A to a sufficiently large
value and solving this optimization yields simultaneously sparse g,s. Given the convex
objective function in (2.27), one may then attempt to find a solution that minimizes the
objective using, for example, IRLS-based [32] or SOCP-based [92] approaches. We conclude
by noting that a formal analysis of the minimization of the convex objective (2.27) may be

found in [127].

be used in place of the ¢; norm if one is willing to deal with a non-convex objective function. Further, an
£y norm (where g > 2) rather than an ¢, norm could be applied to each row of G because the purpose of
the row operation is to collapse the elements of the row into a scalar value without introducing a sparsifying
effect.
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Chapter 3

Multiple-System Single-Output
(MSSO)
Simultaneous Sparse

Approximation

3.1 Introduction

Here we propose a new type of linear inverse problem (independently of MRI) that requires
a simultaneously sparse set of vectors as the solution. As discussed in Sec. 2.2, prior work
on simultaneously sparse solutions to linear inverse problems focuses on the single-system
multiple-output (SSMO) simultaneous sparsity problem, where there are multiple unknown
vectors, a single system matrix, and a host of observation vectors [32,92,127,129).

Here we study a problem different from the aforementioned one. This multiple-system
single-output (MSSO) simultaneous sparsity problem still consists of multiple unknown vec-
tors, but now each such vector is passed through a different system matrix and the outputs
of the various system matrices undergo a linear combination, yielding only one observation
vector. Given the matrices and lone observation, one must find a simultaneously sparse set
of vectors that (approximately) solves the system. This problem has been explored in an
MRI RF low-flip excitation pulse design context [157,162,167], and may also have applica-

tions to source localization using sensor arrays [74,84] and signal denoising {24, 38,44, 49].
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Like SSMO, MSSO arises as a generalization of the single-system single-output (SSSO)
sparse approximation problem, where there is one known observation vector, a known system
matrix, and the solution one seeks is a single sparse unknown vector [24,52,107].

In this chapter, we propose three forward-looking greedy techniques—matching pursuit
(MP) [93], orthogonal matching pursuit (OMP) [23,31,96], and least squares matching
pursuit (LSMP) [31]—and also develop IRLS-based, shrinkage-based, and SOCP-based al-
gorithms to approximately solve the NP-Hard MSSO simultaneous sparsity problem. We
then evaluate the performance of the algorithms across three experiments: the first and sec-
ond involve sparsity profile recovery in noiseless and noisy scenarios, respectively, while the
third deals with linear MRI RF excitation pulse design from the perspective of an applied
mathematician rather than an MRI pulse designer. We also prove that single-vector sparse
approximation of a complex vector readily maps to the MSSO problem.

We first formulate the MSSO problem in Sec. 3.2 and then propose seven algorithms for
solving the problem in Sec. 3.3. Details and results of the numerical experiments are given
in Sec. 3.4, while the strengths and weaknesses of the algorithms are discussed in Sec. 3.5.
Concluding remarks appear in Sec. 3.6. A version of the work in this chapter is currently

under review [155).

3.2 MSSO Problem Formulation

We outline the MSSO problem in a style analogous to that of SSMO systems in (2.26, 2.27)
and then pose a second formulation that is useful for deriving several algorithms in Sec. 3.3.
3.2.1 Standard Formulation

Consider the following system:

d=Fig; +---+Fpgp

g
=[F,---Fp] | : = Fiot8tot»

(3.1)

gp

where d € CM and the F, € CM*N are known. Unlike the SSMO problem in (2.26),

there is now only one observation and P different system matrices. Here we again desire an
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approximate solution where the g,s are simultaneously sparse; formally,

min  [|[d — Fiot8otll2 s-t. the simultaneous K-sparsity of the g,s. (3.2)
81, 8p

This is, of course, harder than the base case SSSO problem in (2.23) and thus NP-Hard. To
keep the problem as general as possible, there are no constraints on the values of M, N, or P,
i.e., there is no explicit requirement that the system be overdetermined or underdetermined.

Further, we have used complex-valued rather than real-valued variables.

In the first half of Sec. 3.3, we will pose three approaches that attempt to solve the
MSSO problem (3.2) in a greedy fashion. Another approach to solve the problem is to
apply a relaxation similar to (2.25, 2.27):

min {314 - Fuogell + A [Glls (3.3)

where G and ||G||s are the same as in (2.27) and (2.28), respectively. In the second half of
Sec. 3.3, we will outline four algorithms for solving this relaxed problem. By setting P = 1,

(3.3) collapses to the base case of (2.25).

3.2.2 Alternate Formulation

In several upcoming derivations, it will be useful to view the MSSO problem from a different
standpoint. To begin, we construct several new variables that are simply permutations of

the Fps and g,s. First we define N new matrices:
Cn=1[f1n...,fpn] €CM*F forn=1,...,N, (3.4)
where f}, ,, is the nth column of F;,. Next we construct N new vectors:

h, = [gl[n],..‘,gp[n]]T € (CP, forn=1,...,N, (3.5)
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where g,[n] is the nth element of g, and T is the transpose operation. Given the Cps and

h,s, we now pose the following system:

d=Cjh; +---+Cnhy
by
=[C1---Cn] | : | = Cyothyot.
hy

(3.6)

Due to (3.4, 3.5), the system in (3.6) is eguivalent to the one in (3.1). The relationship
between the g,s and h,s implies that if we desire to find a set of simultaneously sparse g,s
to solve (3.1, 3.2), we should seek out a set of hy,s where many of the h,s equal an all-zeros
vector, 0, but a few h,s are high in ¢ energy (typically with all elements being nonzero).
This claim is apparent if we consider the fact that H = [hy,. .., hy] is equal to the transpose
of G, and that the g,s are only simultaneously sparse when ||G||s is sufficiently small.

Given this setup, the NP-Hard formulation here equivalent to that of (3.2) is as follows:

minh |[d — Ciothiot||2 s-t. the usage of only K of the hys, (3.7)

hy,....hy

which, similarly to (3.2), might be (approximately) solved from a greedy standpoint.
Continuing with this alternate formulation, and given our desire to find a solution where

most of the h,s are all-zero vectors and a few are dense, we relax the problem as follows:

N
min {% ld - Crothiot|2+A S nhnnz} . (3.8)

tot n=1

Fixing A to a sufficiently large value and solving this optimization yields many low-energy
h,;s (each close to 0), along with several dense high-energy h,s. Further, because 2712[:1 Iy, |2
is equivalent to ||Gl||g, this means (3.8) is equivalent to (3.3), and thus just like (3.3), the

approach in (3.8) finds a set of simultaneously sparse g,s.

3.2.3 Differences between the SSMO and MSSO Problems

In the SSMO problem, we see from (2.26) that there are many different ds and a single F.
The ratio of unknowns to knowns always equals N/M regardless of the number of obser-

vations, P. A large P when solving SSMO is actually beneficial because the simultaneous
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sparsity of the underlying g,s becomes more exploitable; empirical evidence of improved
sparsity profile recovery with increasing P may be found in both [32] and [92].

In contrast, we see from (3.1) that in the MSSO problem there is a single d and many
different F's. Here the ratio of unknowns to knowns is no longer constant with respect
to P; rather it is equal to PN/M. We will show in Sec. 3.4 that as P increases, the
underlying simultaneous sparsity of the g,s is not enough to combat the increasing number
of unknowns, and that for large P, correctly identifying the sparsity profile of the underlying

unknown g,s is a daunting task.

3.3 Proposed Algorithms

We now derive algorithms to (approximately) solve the MSSO problem defined in Sec. 3.2.

3.3.1 Matching Pursuit (MP)

To begin, we extend the single-vector case of matching pursuit [93] to an MSSO context.
The classic MP technique first finds the column of the system matrix that best matches
with the observed vector and then removes from the observation vector the projection of
this chosen column. It proceeds to select a second column of the system matrix that best
matches with the residual observation, and continues doing so until either K columns have
been chosen (as specified by the user) or the residual observation ends up as a vector of
all zeros. This algorithm is fast and computationally-efficient because the best-matching
column vector during each iteration is determined simply by calculating the inner product
of each column vector with the residual observation and ranking the resulting inner product
magnitudes.

Now let us consider the MSSO system as posed in (3.6). In the first iteration of standard
MP, we seek out the single column of the system matrix that can best represent d. But in the
MSSO context, we need to seek out which of the N C,, matrices can be best used to represent
d when the columns of C,, undergo an arbitrarily-weighted linear combination. The key
difference here is that on an iteration-by-iteration basis, we are no longer deciding which
column vector best represents the observation, but which matriz does so. The intuition
behind this approach is that ideal solutions should consist of only a few dense h,s and

many all-zeros h,s. For the kth iteration of the algorithm, we need to select the proper
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index n € {1,..., N} by solving:
gr = argmin min [re_y — Cphin|3, (3.9)
n n

where ¢ is the index that will be selected and ri_; is the current residual observation. For
fixed 7, the solution to the inner minimization is obtained via the pseudoinverse, hoP* =

Cer_l, yielding
gx = argmin nﬁin tk—1 — Cn(Clre_1)||2 = argmax rfl ;C,Clrs_s, (3.10)
n n n

where ® is the Hermitian transpose. From (3.10) we see that, analogously to standard
MP, choosing the best index for iteration k involves computing and ranking a series of
inner-product-like quadratic terms.

Algorithm 3.1 outlines the entire procedure. After K iterations, one obtains Ix C
{1,..., N} (of cardinality T < K), a set indicating the chosen C,, matrices. The weights to
apply to each chosen matrix (i.e., the corresponding h,s) are obtained via a finalization step;
they are the best weightings in the £s-residual-error sense with which to linearly combine the
columns of the chosen C,, matrices to best match the observation d. Since T total matrices
end up being chosen by the process, there is no penalty in retuning the T associated h,
vectors because they are allowed to be dense. The N — T other C,s (and corresponding
h,s) are not used.!

One property of note is that if M < P, Algorithm 3.1 stops after one iteration. This is
because C,C} in this case is simply an M x M identity matrix for all n € {1,...,N}, and
thus any one of the C,s is enough to represent d exactly when its columns are properly

weighted and linearly combined.

3.3.2 Orthogonal Matching Pursuit (OMP)

In single-vector MP, the residual ry always ends up orthogonal to the kth column of the
system matrix, but as the algorithm continues iterating, there is no guarantee the residual

remains orthogonal to column & or is minimized in the least-squares sense with respect to

'From the perspective of Fps and g,s in (3.1), Algorithm 3.1 determines weights to place along only T
rows of G (leaving the other N — T rows zeroed out) that still yields a good approximation of d in the ¢
error sense. It is seeking out the best rows of G which, when densely filled, yield a sound approximation of
d.
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Algorithm 3.1 MSSO Matching Pursuit
Task: greedily choose up to K of the C,s to best represent d via C1h; +---+ Cyhy.

Data and Parameters: d and C,,n € {1,..., N} are given. K iterations.
Precompute: Q, = C,C}, forn e {1,...,N}.
Initialize: Set k =0, rg=d, Iy =0, So =[]
Iterate: Set k =1 and apply:
® g, = argmax,, r?_lQnrk_l.

o if qr ¢ Ix_; then
I = L1 U{qr}

Sk = [Sk-1, Cq]
else

Iy = I 1

Sk = Sk-1
end if

oy =Tp1— QT 1
e k =k + 1. Terminate loop if kK > K or ry = 0. Ix ends with T' < K elements.

Compute Weights: x = S}{d, unstack x into hy,, ..., hg,; set remaining h,s to 0.

the entire set of k chosen column vectors (indexed by ¢i, ..., gx). Furthermore, K iterations
of single-vector MP do not guarantee K different columns will be selected. Single-vector
OMP is an extension to MP that attempts to mitigate these problems by improving the
calculation of the residual vector. During the kth iteration of single-vector OMP, column
gk is chosen exactly as in MP (by ranking the inner products of the residual vector ry
with the various column vectors), but the residual vector is updated by accounting for all
columns chosen up through iteration k rather than simply the last one [31,96].

To extend OMP to the MSSO problem, we choose matrix g during iteration k as in

MSSO MP and then in the spirit of single-vector OMP compute the new residual as follows:
ry =d — S(Sld), (3.11)

where S, = [Cy,,...,Cg,] and SLd is the best choice of x that minimizes the residual error
ld — Sgx||2. That is, to update the residual we now employ all chosen matrices, weighting
and combining them to best represent d in the least-squares sense, yielding an ry that
is orthogonal to the columns of Sy (and thus orthogonal to Cg,...,Cg, ), which has the
benefit of ensuring that OMP will select a new C, matrix at each step.

Algorithm 3.2 describes the OMP algorithm; the complexity here is moderately greater
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Algorithm 3.2 MSSO Orthogonal Matching Pursuit
Task: greedily choose up to K of the C,s to best represent d via C1h; +---+ Cyhpy.

Data and Parameters: d and C,,n € {1,..., N} are given. K iterations.
Precompute: Q, = C,C}, for n € {1,...,N}.
Initialize: Set k =0,ro=d, Ip =0, So=1].
Iterate: Set k =1 and apply:
® g =argmax,gy , rg_lQnrk_l.
I = Ixr—1 U {gx}
Sk = [Sk-1, Cq]
o ry=d— S;Sld.
e k =k + 1. Terminate loop if k > K or ry = 0. Ik ends with T < K elements.

Compute Weights: x = S}{d, unstack x into hg,,...,hg,; set remaining hy,s to 0.

than that of MP because the pseudoinversion of an M x Pk matrix is required during each

iteration k.

3.3.3 Least Squares Matching Pursuit (LSMP)

Beyond OMP there exists a greedy algorithm with an even greater computational complexity
known as LSMP. In single-vector LSMP, one solves N — k + 1 least squares minimizations
during iteration & in order to determine which column of the system matrix may be used

to best represent d [31].

Thus to extend LSMP to MSSO systems, we must ensure that during iteration k we
account for the k — 1 previously chosen C,, matrices when choosing the kth one to best

construct an approximation to d. Specifically, index g, is selected as follows:

gk = argmin min ||S§cn)x —dJ3, (3.12)

ne{l,...,N},n¢Ik_1 x
where I is the set of indices chosen up through iteration k& — 1, S;c") = [Sk-1,Chnr),
Sk-1 = [Cq,---,Cq,_,], and x € CPk. For fixed n, the solution of the inner iteration is

XOPt = (S,(c"))fd; it is this step that ensures the residual observation error will be minimized

by using all chosen matrices. Substituting x°P* into (3.12) and simplifying the expression
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Algorithm 3.3 MSSO Least Squares Matching Pursuit
Task: greedily choose K of the C,s to best represent d via C1h; +--- 4+ Cyhy.

Data and Parameters: d and C,,n € {1,..., N} are given. K iterations.
Initialize: Set k=0, Ip =0, So=[].
Iterate: Set k =1 and apply:

o gx = argmax, 4, d¥(S{V)(S{")'d, where S{¥ = [Sy_1, Cy]

o Iy =Ir_1U{q}

o S = [Sk-1,Cq,l

e k =k + 1. Terminate loop if £ > K or rp = 0. Ig ends with T < K elements.

Compute Weights: x = Skd, unstack x into hg,, ..., hy,; set remaining h,s to 0.
yields
gr, = argmax dHQECn)d, (3.13)
né¢lpy

where QEC") = (Sgcn))(S,(gn))T.

Algorithm 3.8 describes the LSMP method. The complexity here is much greater than
that of OMP because N — k + 1 pseudoinversions of an M x Pk matrix are required during
each iteration k. Furthermore, the dependence of Q,(Cn) on both n and k¥ makes precomputing
all such matrices infeasible in most cases. One way to decrease computation and runtime

might be to extend the projection-based recursive updating scheme of [31] to MSSO LSMP.

3.3.4 Iteratively Reweighted Least Squares (IRLS)

Having posed three greedy approaches for solving the MSSO problem, we now turn our
attention toward minimizing (3.8), the relaxed objective function. Here, the regularization

term A is used to trade off simultaneous sparsity with residual observation error.

One way to minimize (3.8) is to use an IRLS-based approach [77]. To begin, consider
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manipulating the right-hand term of (3.8) as follows:

N N N
bl 1]+ [P
A2 Ml =20t =20 ThaT

A N ”hn2||2+€ h,[1]
Py [h:[].],,h;[P]] :
22

2
R fl2+e B[]

(3.14)
L
=3 > hiW,h,
n=1
W] hl
AnH G H ALH
=3 [bi - --hiy] = Ehtotwtothtota

Wy hy

where * is the complex conjugate of a scalar, W,, is a P x P real-valued diagonal matrix
whose diagonal elements each equal 2/(||hy||2 + €), and € is some small non-negative value
introduced to mitigate poor conditioning of the Wys. If we fix Wy, € RPVNXPN by com-
puting it using some prior estimate of hget, then the right-hand term of (3.8) becomes a

quadratic function and (3.8) transforms into a Tikhonov optimization [123,124]:

Lnin {% ”d - Ctothtotllg + %hgtwtothtot} . (315)

tot

Finally, by performing a change of variables and exploiting the properties of Wiq:, we can
convert (3.15) into an expression that may be minimized using the robust and reliable
conjugate-gradient (CG) least-squares solver LSQR. [100,101], so named because it applies
a QR decomposition [51] when solving the system in the least-squares sense. LSQR works
better in practice than several other CG methods [13] because it restructures the input
system via the Lanczos process [86] and applies a Golub-Kahan bidiagonalization [50] prior
to solving it. (Aside: we will study LSQR in an MRI pulse design context in Ch. 4.)

To apply LSQR to (3.15), we first construct W:({tz as the element-by-element square-
-1/2

root of the diagonal matrix Wy, and then take its inverse to obtain W, ,’“. Defining
q=W/2hy; and A = CyoyWiet/?, (3.15) becomes:
min {[|d - Aqll; + Allall3}, (3.16)
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Algorithm 3.4 MSSO Iteratively Reweighted Least Squares
Task: Minimize {% ld — Ctothtotllg + A Zf:;l ||hn||2} using an iterative scheme.

Data and Parameters: A, d, Ci,, J, and K are given.
Initialize: Set £ = 0 and hyo k=0 = (Ciot)Td (or e.g. hiot k=0 = 1).
Iterate: Set k =1 and apply:

o Create Wiot from hyes x—1; construct Wi({f , Wt"oi/ 2, and let A = Ctht_oi/ 2

Obtain qyy,, by using LSQR to solve ming {||d — Aq||5 + Allql|3}-

—-1/2
Set htot,tmp = Wtot/ Qtmp-

Line search: find pg € [0,1] such that (1 — p)hyot k-1 + phiot,emp minimizes (3.8).

Set hiotkx = (1 — 20)htot,k—1 + Hohtot,tmp-
e k =k + 1. Terminate loop when k > K or (3.8) decreases by less than 6.

Finalize: Unstack the last hyy solution into hy,..., hy.

This problem may be solved directly by simply providing d, A, and A to the LSQR package
because LSQR is formulated to solve the exact problem in (3.16). Calling LSQR with these
variables yields q°Pt, and the solution h?®' is backed out via W/ q°Pt.

Algorithm 3.4 outlines how one may iteratively apply (3.16) to attempt to find a solution
that minimizes the original cost function, (3.8). The technique iterates until the objective
function decreases by less than § or the maximum number of iterations, K, is exceeded. The
initial solution estimate is obtained via pseudoinversion of Ciy (an all-zeros initialization
would cause Wy, to be poorly conditioned). A line search is used to step between the
prior solution estimate and the upcoming one; this improves the rate of convergence and
ensures the objective decreases at each step. This method is global in the sense that all

PN unknowns are being estimated concurrently per iteration.

3.3.5 Row-by-Row Shrinkage (RBRS)

The proposed IRLS technique solves for all PN unknowns during each iteration, but this
is cumbersome when PN is large. An alternative approach is to apply an inner loop that
fixes n and then iteratively tunes h, while holding the other h,,s (m # n) constant; thus
only P (rather than PN) unknowns need to be solved for during each inner iteration.

Y

This idea inspires the RBRS algorithm. The term “row-by-row” is used because each

h,, corresponds to row n of the G matrix in (3.3), and “shrinkage” is used because the /o
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energy of most of the hy,s will essentially be “shrunk” (to some extent) during each inner
iteration: when A is sufficiently large and many iterations are undertaken, many h,s will

be close to all-zeros vectors and only several will be dense and high in energy.

RBRS for real-valued data

Assume d and the Cgs of (3.8) are real-valued. We now seek to minimize the function by
extending the single-vector sequential shrinkage technique of [43] and making modifications
to (3.8). Assume we have prior estimates of h; through hy, and that we now desire to
update only the jth vector while keeping the other N — 1 fixed. The shrinkage update of

h; is achieved via:
min {}|/[ZX;Cabn — Cjhy] + Cjx — 5 + A ||x||2} : (3.17)

where =_, C,h,, — C,;h; forms an approximation of d using the prior solution coefficients,
but discards the component contributed by the original jth vector, replacing the latter
via an updated solution vector, x. The left-hand term promotes a solution x that keeps
residual error down, whereas the right-hand term penalizes xs that contain nonzeros. It is
crucial to note that the right-hand term does not promote the element-by-element sparsity
of x; rather, it penalizes the overall £5 energy of x, and thus both sparse and dense xs are
penalized equally if their overall #, energies are the same.

One way to solve (3.17) is to take its derivative with respect to xT and find x such that
the derivative equals 0. By doing this and shuffling terms, and assuming we have an initial
estimate of x, we may solve for x iteratively:

A -1

= |cTc, + — 2 Ty,
x; = |C;C; + il € Il Cjry, (3.18)

where r; =d + Cjh; — Eﬁ=1Cnhn, Iis a P x P identity matrix, and ¢ is a small value that
avoids ill-conditioned results.? By iterating on (3.18) until (3.17) changes by less than Sinper,
we arrive at a solution to (3.17), x°Pt, and this then replaces the prior solution vector, h;.
Having completed the update of the jth vector, we proceed to update the rest of the vectors,

looping this outer process K times or until the main objective function, (3.8), changes by

2Eq. (3.18) consists of a direct inversion of a P x P matrix, which is acceptable in this paper because all
experiments involve P < 10. If P is large, (3.18) could be solved via a CG technique (e.g., LSQR).
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Algorithm 3.5 MSSO Row-by-Row Sequential Iterative Shrinkage

Task: Minimize {% ld — Cmthtotllg + /\Zgzl ||hn||2} using an iterative scheme when all
data is real-valued.
Data and Parameters: A\, d, C,, (n € {1,...,N}), Souters Oinner, K, and I are given.
Initialize: Set k = 0 and hyy = (Ciot)'d (or e.g. hioy = 1), unstack into hy, ... hy.
Iterate: Set k =1 and apply:
e Sweep over row vectors: set j = 1 and apply:
o Optimize a row vector: set i = 1 and xo = h; and then apply:
e xi= |CfCy + 2 ! - CTr;, where r; = d + Cjh; — SN_, C,h,.
e i =14+ 1. Terminate when ¢ > I or (3.17) decreases by less than dipner-
o Finalize row vector update: set h; to equal the final x.
o j = j+ 1. Terminate loop when j > N.
e k =k + 1. Terminate loop when k > K or (3.8) decreases by less than doyuter-

Finalize: If A was large enough, several h,s should be dense and others close to O.

less than douter. Algorithm 3.5 details the entire procedure; unlike IRLS, here we essentially
repeatedly invert P x P matrices to pursue a row-by-row solution, rather than PN x PN

matrices to pursue a solution that updates all rows per iteration.

Extending RBRS to complex-valued data

If (3.8) contains complex-valued terms, we may structure the row-by-row updates as in
(3.17), but because the derivative of the objective in (3.17) is complicated due to the
presence of complex-valued terms, the simple update equation given in (3.18) is no longer
applicable. One way to overcome this problem is to turn the complex-valued problem into
a real-valued one.

To accomplish this conversion, let us first create several real-valued expanded vectors:

Re(d) eRM, f— Re(h,)
Im(d) Im(h,)

(=M
I

€ R?P, (3.19)

as well as real-valued expanded matrices:

C, = Re(Cr) —Im(Cn) | porixar (3.20)
Im(C,) Re(Cp)
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Due to the structure of (3.19, 3.20) and the fact that ||hy||z equals ||hy||2, the following

optimization is equivalent to (3.8):

2

N
+A) gz p - (3.21)
2 n=1

~ N ~ ~
d—ZCnhn

n=1

_ min_ %
hi,...,hy

This means we may apply RBRS to complex-valued scenarios by substituting the Ens for
the h,s and Cps for the Cps in (3.17, 3.18) and Algorithm 3.5. [Eq. (3.18) becomes an
applicable update equation because (3.17) will consist of only real-valued terms and the
derivative calculated earlier is again applicable.] Finally, after running the algorithm to

obtain finalized 1~1ns, we may simply restructure them into complex hy,s.

3.3.6 Column-by-Column Shrinkage (CBCS)

Here we propose a dual of RBRS—a technique that sequentially updates the columns of G
(i.e., the gys) in (3.1, 3.3) rather than its rows (the hys). Interestingly, we will show that
this approach yields a separable optimization and reduces the overall problem to simply

repeated element-by-element shrinkages of each g,

CBCS for real-valued data

Assume the g,s, Fys, and d in (3.3) are real-valued and that we have prior estimates of
the g,s. Let us consider updating the pth vector while keeping the other P — 1 fixed. This
reduces (3.3) to

N
min {% I = Fpxll7 + 2D v/(x[n])% + b[n]} ; (3.22)
n=1

where x will be the update of g, and r and b are as follows:

P
r=d+Fyg,— Y Fug, (3.23)
q=1
and P
b[n] = —(g,[n))® + > _(gnl)? forn=1,...,N. (3.24)

q=1
If the b[n]s were not present, (3.22) would reduce to the standard problem iterated shrinkage
is intended to solve [43,44].
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Now let us apply a proximal relaxation [30,34,48] to (3.22) and seek a solution x € RY

as a shrinkage update of g,:

N
min {% (Hr ~Fox|+alx g2~ |Falx — gp)||§) +A> VR + b[n]} , (3.25)
n=1

where « is chosen such that oI — F;FFZ, is positive definite (e.g., @ may be set to the
maximum singular value of F;,). The idea here is to replace g, with the solution x and then
iterate this procedure, repeatedly solving (3.25). This ultimately yields an updated x that
globally minimizes (3.22) because the proximal method is guaranteed to arrive at a local
minimum [34, 48] and (3.22) itself is convex. Having obtained x, we perform an update,
g, = X, and then repeat the overall process for the next g,, and so forth. Additionally, we
add a layer of iteration on top of this column-by-column sweep, optimizing each of the P

vectors a total of K times.

The only obstacle that remains in order for us to implement the entire algorithm is an

efficient way to solve (3.25). We pursue such an approach by first expanding the terms of

(3.25):

N
min {c +vIx+ %XTX + A Z Vv (x[n])? + b[n]} : (3.26)
n=1

where ¢ = %rTr-l—%gggp—%ggFnggp and v = Fnggp—agp—Fgr. Since ¢ is constant, we
may ignore it in the optimization. Upon closer inspection, we see that (3.26) is a separable
problem and that the individual scalar elements of x may be optimized independently. For

the nth element of x, (3.26) simplifies to:

min {v[n]x[n] + %(x[n])2 AR+ b[n}} : (3.27)

x[n]

Having burrowed down to an element-by-element problem, all that remains is to efficiently
solve (3.27). Ome approach is to compute the derivative of its objective with respect to
x[n] and find x[n] such that the derivative equals zero. The derivative equals the following

nonlinear scalar equation:

A
v[n] + x[n] (a + T b{n]) : (3.28)
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Setting the derivative in (3.28) to zero and assuming we have an initial estimate of x[n}, we

may solve for x[n] iteratively as follows:

-1
A
(x[n];) = —v[n] (a + NEOEETOE: e) , (3.29)

where € is simply a small value that avoids ill-conditioned scenarios.

We may now formulate CBCS as Algorithm 3.6. As we seek to update a fixed g;, note
how we iteratively tune its NV elements, one at a time, via (3.29), but instead of moving on
immediately to update g5, we update g;, r, v, and b, and tune over the elements of g; yet
again, doing this repeatedly until the per-vector objective, (3.22), stops decreasing—only
then moving on to g,. Empirically, we find this greatly speeds up the rate at which the
g, converge to a simultaneously sparse solution, but unfortunately, even with this extra
loop, CBCS still requires excessive iterations for larger problems (see Sec. 3.4). Similarly
to RBRS in Algorithm 3.5, note how the inner loops are cut off when the objective function
stops decreasing to within some small value § or some fixed number of iterations has been

exceeded.

Extending CBCS to complex-valued data

If (3.3) contains complex-valued terms, we may structure the column-by-column updates as
in (3.22, 3.25), but the expansion and derivative of the latter equation’s objective function
does not lend itself to the simple update equations given in (3.26, 3.27, 3.29). One way to
overcome this problem is to turn the complex-valued problem into a real-valued one. This
approach is not equivalent to the one used to extend RBRS to complex data.

First we stack the target vector, d, into a real-valued vector:

Re(d)
Im(d)

(=
Il

€ RM, (3.30)

and then split, rather than stack, the unknown vectors into 2P new vectors:

g = Re(g,) € RY, g™ =1Im(g,) €eRY, forp=1,...,P. (3.31)

We then aggregate these vectors into G = [g&Rﬁ), gglm), ey ggle), ggm)]. Next, we split each
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Algorithm 3.6 MSSO Column-by-Column Sequential Iterative Shrinkage
Task: Minimize {% [[d — Fiotiolla + A ”G“S} when all data is real-valued.

Data and Parameters: A, d, Fp,p € {1,..., P}, dtot, Ovecs Oelems K, J, I are given.
Initialize: g, = (Fiot)'d; split into g1, ...,gp; set @ = max. sing. val. among Fs.
Iterate: Set k£ =1 and apply:
e Sweep over column vectors: set p = 1 and apply:
o Optimize a column vector: set 7 =1 and apply:

e Construct r =d + Fpg, — Zf;:l F.g,.
o Construct bl] = —(g,[))2 + Y1 (g,ll])?, for i =1,...,N.

_wT T
Construct v =F,Fyg, —ag, —F,r.

Set xo = gp-

Sweep over column elements: set n = 1 and apply:

o Optimize nth element of x: set ¢ = 1 and apply:

\ -1
o (x[n)i) = —vn] (a - \/(x[n]i_1)2+b[n]+e> '

e =i+ 1. Stop if i > I or (3.27) decreases by less than dejem.

o n=n-+ 1. Terminate when n > N.

Update column vector: set g, to equal the final x.
e j=j+ 1. Terminate when j > J or (3.22) decreases by less than dyec.
o p=p+ 1. Terminate when p > P.
e k =k + 1. Terminate loop when k > K or (3.3) decreases by less than 6;os.

Finalize: If A was sufficiently large, g;,...,gp should be simultaneously sparse.
F, into two separate matrices, forp=1,..., P:
FI()A) _ Re(Fp) € R2MXN F}()B) _ —Im(F,) € R2MXN, (3.32)
Im(F,) Re(F,)

yielding 2P new real-valued matrices.

Due to the structure of (3.30, 3.31, 3.32), the following optimization is equivalent to
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(3.3):

2
P P

min {3 3 Rg - 3o

G p=1 p=1 9
(3.33)
N P Re) P (Im)
+23 D@ mD2 + > (g [n])z}-
=1 p=1 p=1

The equivalence arises because the first and second terms of (3.33) are equivalent to ||d —
Fiot8iotll2 and ||G||s in (3.3), respectively.
This means we may apply CBCS to complex-valued problems by performing column-

by-column optimization over the 2P real-valued unknown vectors. This works because

CBCS will pursue solutions where the g{®, g(Im)’ o, gBe) olm) Goctors are simultaneousl
1 1 P P Y
sparse, which is equivalent to pursuing simultaneously sparse g;,...,gps. After running

CBCS on the 2P vectors, we simply restructure them into P complex-valued g,s.

Finally, let us set P = 1 and thus consider the case of single-vector sparse approximation.
The above derivations show that seeking a single sparse complex-valued vector is equivalent
to seeking two simultaneously sparse real-valued vectors. In other words, single-vector
sparse approximation of a complex vector readily maps to the MSSO problem, increasing

the applicability of algorithms that solve the latter.

3.3.7 Second-Order Cone Programming (SOCP)

We now propose a seventh and final algorithm to solve the MSSO problem as given in (3.3).
We branch away from the shrinkage approaches that operate on individual columns or rows
of the G matrix and again seek to concurrently estimate all PN unknowns. Rather than
using an IRLS technique, however, we pursue a second-order cone programming approach,
motivated by the fact that second-order cone programs may be solved via efficient interior
point algorithms [120, 125] and are able to encapsulate conic, convex-quadratic [97], and
linear constraints. (Quadratic programming is not an option because the g,s, Fys, and d

may be complex.)

Second-order conic constraints are of the form a = [a;,...,a N]T such that

a1, - .., an—1]Tll2 < an. (3.34)
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The generic format of an SOC program is
min ¢'x st. Ax=band x € K, (3.35)

where K = ]Rf x Lq x -+ x Ly, Rﬂ\_’ is the N-dimensional positive orthant cone, and the

L,s are second-order cones [97]. To convert (3.3) into the SOC format, we first write

S T
min {-2-5 + A1 t}
s.t. 2 = dyor—Fioto, and ||z]3 < s (3.36)

and ||[Re(g; [n]), Im(g; [n]), ..., Re(gp[n]), Im(gp[n])] " [l2 < tn

where n € {1,...,N} and t = [t1,...,tx]T. The splitting of the complex elements of the
g,s mimics the approach used when extending CBCS to complex data, and (3.36) makes
the objective function linear, as required. Finally, in order to represent the |z[3 < s
inequality in terms of second-order cones, an additional step is needed. Given that s =
1(s+1)2 — (s — 1)2, the inequality may be rewritten as z'lz + (s — 1)> < 2(s + 1)? and
then expressed as a conic constraint: ||[z7, (s — 1)]|l2 < 3(s + 1) [91,97]. Applying these

changes yields

min {%8 + /\1Tt}
s.t. z2 = diot — Frot8or and ”[ZT, u]T||2 <w,
(3.37)
u=(s-1)/2,v=(s+1)/2,5 >0,

and [|[Re(g; [n]), Im(g; [n]), . . ., Re(gp[n]), Im(gp[n])] |2 < tn,

which is a fully-defined SOC program that may be implemented and solved numerically.
There is no Algorithm pseudocode for this technique because having set up the variables in
(3.37), one may simply plug them into an SOCP solver. In this paper we implement (3.37)
in SeDuMi (Self-Dual-Minimization) [120], a free software package consisting of MATLAB and

C routines.

3.4 Experiments and Results

Our motivation for solving MSSO sparse approximation problems comes from MRI RF

excitation pulse design. Due to the NP-hardness of the problem (3.2), there is no reasonable
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way to check the accuracy of approximate solutions to these problem instances obtained with
the algorithms introduced here. Thus, before turning to the MRI RF excitation pulse design
problem in Sec. 3.4.3, we present several synthetic experiments. These experiments allow
comparisons among algorithms and also reveal some empirical properties of the relaxation
(3.3). Theoretical exploration of this relaxation is also merited but is beyond the scope of
this dissertation.

All experiments are performed on a Linux server with a 3.0-GHz Intel Pentium IV
processor. The system has 16 gigabytes of random access memory, ample to ensure that
none of the algorithms require the use of virtual memory; this completely avoids excessive
hard drive paging. MP, LSMP, IRLS, RBRS, CBCS are implemented in MATLAB, whereas
SOCP is implemented in SeDuMi. The runtime of any method could be reduced significantly
by implementing it in a completely compiled format such as C. Note: OMP is not evaluated

because its performance always falls in between that of MP and LSMP.

3.4.1 Sparsity Profile Estimation in a Noiseless Setting
Overview

We now evaluate how well the algorithms of Sec. 3.3 estimate sparsity profiles when the
underlying g,s are each strictly and simultaneously K-sparse and the observation d of
(3.1) is known exactly and not corrupted by noise. This corresponds to a high-SNR source
localization scenario where the sparsity profile indicates locations of emitters and our goal
is to find the locations of these emitters [74,84,91,92]. Our goal is to get an initial grasp of
the challenges of solving the MSSO problem.

We synthetically generate real-valued sets of Fys and g,s in (3.1), apply the algorithms,
and record the fraction of correct sparsity profile entries recovered by each. We vary M in
(3.1) to see how performance at solving the MSSO problem varies when the Fys are under-
determined vs. overdetermined and also vary P to see how rapidly performance degrades

as more system matrices and vectors are employed.

Details

For all trials, we fix N = 30 in (3.1) and K = 3, which means each g, vector consists

of thirty elements, three of which are nonzero. We consider P € {1,2,...,8}, and M €
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{10,15,...,40}. For each of the fifty-six fixed (M, P) pairs, we create 50 random instances

of (3.1). Each of the 2,800 instances is constructed and evaluated as follows:

e Pick a K-element subset of {1,..., N} uniformly at random. This is the sparsity profile.

o Create P total N-element vectors, the g,s. The K elements of each that correspond to
the sparsity profile are filled in with draws from a Gaussian ~ N(0,1) distribution; all

other elements are set to zero.

o Create P total M x N matrices, the Fps. Each element of each matrix is determined by

drawing from N(0, 1); each column of each matrix is normalized to have unit 2 energy.
e Compute d = 211;1 F,g,. Shuffle Fys and gys into Cys and hys via (3.4, 3.5).
e Apply the algorithms:

o MP, LSMP: iterate until K elements are chosen or the residual approximation is 0. If

less than K terms are chosen, this hurts the recovery score.

o IRLS, RBRS, CBCS, SOCP: approximate a A oracle: proxy for a good choice of A
by looping over roughly seventy As in [0,2], running the given algorithm each time.
This sweep over A results in high-energy, dense solutions through negligible-energy, all-
zeros solutions. For each of the estimated g,.s (that vary with \), estimate a sparsity
profile by noting the largest ¢ energy rows of the associated G matrix.? Remember

the highest fraction recovered across all As.

After performing the above steps, we average the results of the 50 trials associated with

each fixed (M, P) to yield the average fraction of recovered sparsity profile elements.

Results

Each subplot of Fig. 3-1 depicts the average fraction of recovered sparsity profile elements
versus the number of knowns, M, for a fixed value of P, revealing how performance varies
as the Fj, € RM*N matrices go from being underdetermined to overdetermined.

Recovery Trends. As the number of knowns M increases, recovery rates improve sub-
stantially, which is sensible. For large M and small P, the six algorithms behave similarly,

consistently achieving nearly 100% recovery. For large P and moderate M, however, spar-

3For example, if the true sparsity profile is {1,2,9} and the largest ¢ energy rows of G are {2,7,8}, then
the fraction of recovered sparsity profile terms equals 1/3. Now suppose only two rows of G have nonzero
energy and the profile estimate is only {7,8}. The fraction recovered is now zero.
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Figure 3-1: Sparsity profile estimation in a noiseless setting. Subplots depict average
fraction of sparsity profile elements recovered over 50 trials of six algorithms as M is varied.
P is fixed per subplot, and N = 30 and K = 3 for all trials. Data is generated as described
in Sec. 3.4.1. Recovery scores for IRLS, RBRS, CBCS, and SOCP assume a good choice of
A is known. For large M, all algorithms exhibit high recovery rates; for large P, small M,
or both, the algorithms that seek to minimize (3.3, 3.8) generally outperform those that
greedily pursue a solution.
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sity profile recovery rates are dismal—as P increases, the underlying simultaneous sparsity
of the g,s is not enough to combat the increasing number of unknowns, PN. As M is de-
creased and especially when P is increased, the performance of the greedy techniques falls
off relative to that of IRLS, RBRS, CBCS, and SOCP, showing that the convex relaxation
approach itself is a sensible way to approximately solve the formal NP-Hard combinatorial
MSSO simultaneous sparsity problem. Furthermore, the behavior of the convex algorithms
relative to the greedy ones coincides with the studies of greedy vs. convex programming
sparse approximation methods in single-vector [24,31] and SSMO contexts [32]. Essentially,
in contrast with convex programming techniques, the greedy algorithms only look ahead
by one term, cannot backtrack on sparsity profile element choices, and do not consider
updating multiple rows of unknowns of the G matrix at the same time. LSMP tends to
perform slightly better than MP because it solves a least squares minimization and explicitly
considers earlier chosen rows whenever it seeks to choose another row of G.

Convergence. Across most trials, IRLS, RBRS, CBCS, and SOCP converge rapidly and
do not exceed the maximum limit of 500 outer iterations. The exception is CBCS when M
is small and P = 8: here, the objective function frequently fails to decrease by less than the
specified § = 107°.

Runtimes. For several fixed (M, P) pairs, Table 3.1 lists the average runtimes of each
algorithm across the 50 trials associated with each pair.* For IRLS, RBRS, CBCS, and
SOCP, runtimes are also averaged over the many A runs. Among the convex minimization
methods, SOCP seems superior given its fast runtimes in three out of four cases. Peak
memory usage is not tracked here because it is difficult to do so when using MATLAB
for such small problems; it will be tracked during the third experiment where the system
matrices are vastly larger and differences in memory usage across the six algorithms are
readily apparent.

Closer Look: Solution Vectors. We now observe how the algorithms that seek to min-
imize the convex objective behave during the 43rd trial when K = 3, N = 30, M = 10,
and P = 1, corresponding to the base case problem of estimating one sparse real-valued
vector, g,. Fig. 3-2 illustrates estimates obtained by SOCP, CBCS, RBRS, and IRLS when
A = 0.03; for each algorithm, a subplot shows elements of both the estimated and actual

g, and lists the estimated sparsity profile (ESP), number of profile terms recovered, and

“In the interest of space we do not list average runtimes for all fifty-six (M, P) pairs.
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(M, P)
Algorithm | (10,8) | (20,1) | (30,5) | (40,8)
MP 5.4 1.8 2.6 4.0
LSMP 114 5.6 15.6 27.6
IRLS 92.6 10.1 73.2 | 175.0
RBRS 635.7 36.0 | 236.8 | 401.6
CBCS 609.8 7.1 191.4 | 396.3
SOCP 44.3 37.0 64.3 | 106.5

Table 3.1: Average algorithm runtimes for noiseless sparsity profile estimation.
For several fixed (M, P) pairs, each algorithm’s average runtime over the corresponding 50
trials is given in units of milliseconds; N = 30 and K = 3 for all trials (runtimes of the latter
four algorithms are also averaged over the multiple A runs per trial). MP is substantially
faster than the other techniques, as expected. For larger problems, e.g. (M, P) = (10,8),
the runtimes of both RBRS and CBCS are excessive relative to those of the other convex
minimization techniques, IRLS and SOCP.

value of the objective function given in (3.3, 3.8). Although RBRS, CBCS, and SOCP
yield slightly different solutions (among which SOCP yields the best profile estimate), they
all yield an objective function equal to 0.028 + 10~%. Convex combinations of the three
solutions continue to yield the same value, suggesting that the three algorithms have found
solutions among a convex set that is the global solution to the objective posed in (3.3, 3.8).
Given the fact that in this case SOCP outperforms RBRS and CBCS, we see that even
the globally-optimal solution to the relaxed convex objective does not necessarily optimally
solve the true K-sparse profile recovery problem. In contrast to the other methods, IRLS
yields a slightly higher objective function value, 0.030, and its solution vector is not part
of the convex set—it does however correctly determine 2 of the 3 terms of the true sparsity

profile.

Closer Look: Objective Function Behavior. Concluding the experiment, Fig. 3-3 plots
the objective vs. A for the 25th trial when M = 30 and P = 6, studying how the objective
(3.3, 3.8) varies with A when applying SOCP, CBCS, RBRS, and IRLS. For all seventy
values of A € [0,2], SOCP, CBCS, and RBRS generate solutions that yield the same ob-
jective function value. For A < i, IRLS attains the same objective function value as the
other methods, but as A increases, IRLS is unable to minimize the objective function as
well as SOCP, RBRS, and CBCS. The behavior in Fig. 3-3 occurs consistently across the
fifty trials of the other (M, P) pairs.
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Figure 3-2: Noiseless sparsity profile estimation with IRLS, RBRS, CBCS, SOCP.
Here M =10, N = 30,P =1, and K = 3. The algorithms are applied with A fixed at 0.03
and attempt to estimate the single unknown vector, g;, along with the sparsity profile.
Subplots depict the elements of both the estimated and actual g, along with the estimated
sparsity profile (ESP), number of profile terms recovered, and objective function value.
SOCP leads to a superior sparsity profile estimate, and SOCP, RBRS, and CBCS seem
to minimize the convex objective given in (3.3, 3.8). IRLS does not, but still manages to
properly identify 2 out of 3 sparsity profile terms.

objFun vs. A (N=30, M=30, P=6, trial 25)

——socp —cbcs —rbrs - - -irls‘

objFun

Figure 3-3: Noiseless sparsity profile estimation: objective function behavior. For
the 25" trial of the (M, P) = (30,6) series, SOCP, CBCS, RBRS, and IRLS are used to
solve (3.3, 3.8) for 70 values of A € [0,2]; the value of the objective function vs. A is given
above. For A\ > i, IRLS’s solutions do not minimize the objective as well as those produced
by the three other methods.
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3.4.2 Sparsity Profile Estimation in the Presence of Noise

Overview

We now evaluate how well the algorithms of Sec. 3.3 estimate sparsity profiles when the
underlying g,s are each strictly and simultaneously K-sparse and the observation d of
(3.1) is corrupted by additive white Gaussian noise. The signal-to-noise ratio (SNR) and
K are varied across sets of Monte Carlo trials in order to gauge algorithm performance
across many scenarios. For a given trial with a fixed SNR level in units of decibels (dB),
the M elements of the true observation vector, diyye, are corrupted with independent and

identically distributed (i.i.d.) zero-mean Gaussian noise with variance o2, related to the

SNR as follows:
1 _
0% = || dinue[} - 10710 (3:38)

This noise measure is analogous to that of [32].

Details

We fix N = 30, M = 25, and P = 3, and consider SNR € {-10,-5,0,...,25,30} and
K € {1,3,5,7,9}. For each fixed (SNR, K) pair, we generate 100 noisy observations and
apply the algorithms as follows:

e Generate the sparsity profile, g,s, Fps, hys, and Cys as in Sec. 3.4.1. The g,s are

simultaneously K-sparse and all terms are real-valued.
e Compute dirye = F1g1 + -+ Fpgp.
o Construct dpeisy = dtrue + 1 where n ~ N(0, 0%I) and o2 is given by (3.38).
e Apply the algorithms by providing them with dpeisy and the system matrices:

o MP, LSMP: iterate until X elements are chosen or the residual approximation is 0. If

less than K terms are chosen, this hurts the recovery score.
o IRLS, RBRS, CBCS, SOCP: using a pre-determined fized A (see below), apply each

algorithm to obtain estimates of the unknown vectors and sparsity profiles.

After performing the above steps, we average the results of the 100 trials associated with
each fixed (SNR, K, alg) triplet to yield the average fraction of sparsity profile elements that

each algorithm recovers.
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Control Parameter Selection. The A mentioned in the list above is determined as fol-
lows: before running the overall experiment, we generate three noisy observations for each
(SNR, K) pair. We then apply IRLS, RBRS, CBCS, and SOCP, tuning the control parame-
ter A by hand until finding a single value that produces reasonable solutions. All algorithms
then use this hand-tuned, fixed X and are applied to the other 100 noisy observations associ-
ated with the (SNR, K) pair under consideration. Thus, in distinct contrast to the noiseless

experiment, we no longer assume an ideal A is known for each denoising trial.

Results

Each subplot of Fig. 3-4 depicts the average fraction of recovered sparsity profile elements
versus SNR for a fixed K, revealing how well the six algorithms are able to recover the
K elements of the sparsity profile amidst noise in the observation. Each data point is the
average fraction recovered across 100 trials.

Recovery Trends. When K = 1, we see from the upper-left subplot of Fig. 3-4 that
all algorithms have essentially equal performance for each SNR. Recovery rates improve
substantially with increasing SNR, which is sensible. For each algorithm, we see across the
subplots that performance generally decreases with increasing K; in other words, estimating
a large number of sparsity profile terms is more difficult than estimating a small number
of terms. This trend is evident even at high SNRs. For example, when SNR is 30 dB and
K =7, SOCP is only able to recover ~ 70% of sparsity profile terms. When K = 9, the
recovery rate falls to ~ 60%. For low SNRs, e.g., -5 dB, all algorithms tend to perform
similarly, but the greedy algorithms perform increasingly worse than the others as K goes
from moderate-to-large and SNR surpasses zero dB. In general, MP performs worse than
LSMP, and LSMP in turn performs worse than IRLS, SOCP, RBRS, and CBCS, while the
latter four methods exhibit essentially the same performance across all SNRs and Ks. For
K = 3, MP’s performance falls off relative to IRLS, SOCP, RBRS, and CBCS, but LSMP’s
does not. As K transitions from 3 to 5, however, LSMP performs as badly as MP at low
SNRs, but its performance picks up as SNR increases. As K continues to increase beyond
5, LSMP’s performance is unable to surpass that of MP, even when SNR is large. Overall,
Fig. 3-4 shows that convex programming algorithms are superior to greedy methods when
estimating sparsity profiles in noisy situations; this coincides with data collected in the

noiseless experiment in Sec. 3.4.1, as well as the empirical findings of [31, 32].
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Figure 3-4: Sparsity profile estimation in the presence of noise. Each subplot depicts
the average fraction of recovered sparsity profile elements versus SNR for a fixed K, revealing
how well the algorithms recover the K elements of the sparsity profile amidst noise in the
observation. Each data point is the average fraction recovered across 100 trials; data is
randomly generated as described in Sec. 3.4.2. N, M and P are always fixed at 30, 25, and
3, respectively. For each (SNR, K) pair, a “good” lambda is chosen by denoising a few cases
by hand and then using this fixed A for 100 fresh denoising trials. Performance degrades
with increasing K and decreasing SNR. For large K, the greedy algorithms perform worse
than IRLS, SOCP, RBRS, and CBCS, whereas the latter four methods perform essentially
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Conwvergence. For many denoising trials, CBCS typically requires more iterations than
the other techniques in order to converge. At times, it fails to converge to within the
specified § = 1072, similarly to how it behaves during the noiseless experiment of Sec. 3.4.1.

Runtimes. Across all denoising trials, MP, LSMP, IRLS, RBRS, CBCS, SOCP have
average runtimes of 3.1, 25.1, 57.2, 247.0, 148.5, and 49.2 milliseconds. It seems SOCP
is best for denoising given that it is the fastest algorithm among the four methods that
outperforms the greedy ones. IRLS is nearly as fast as SOCP and thus is a close second
choice for sparsity profile estimation.

Closer Look: Mean Square Errors of Convex Minimization Methods Before and After
Estimating the Sparsity Profile and Retuning the Solution. Now let us consider the 35th
trial of the (SNR = 0 dB, K = 3) pair. We do away with the fixed A assumption and now
assume we care (to some extent) not only about estimating the sparsity profile, but the
true solution h¢o as well. To proxy for this, we study how the mean square errors (MSEs)
of solutions generated by IRLS, SOCP, RBRS, and CBCS behave across A before and after
identifying the sparsity profile and retuning the solution. Figure 3-5 depicts the results of
this investigation.

Running each algorithm for a particular A yields a solution ﬁtot(alg, A). The left subplot
simply illustrates the MSEs of the ﬁtot (alg, \)s with respect to the true solution. Among
SOCP, RBRS, CBCS, and IRLS, only the last is able to determine solutions with MSEs
less than unity (consider the IRLS error curve for A > 0.3).

Consider now retuning each of the hyg(alg, A)s as follows: unstack each into ﬁn(alg, A)
forn € {1,..., N} and then remember the K vectors whose ¢ energies are largest, yielding
an estimate of the K-element sparsity profile. Let these estimated indices be {q1,...,9x}-
Now, generate a retuned solution by using the K matrices associated with the estimated
sparsity profile and solving dneisy = [Cgy, - - -, Cop|Xtot fOr Xior € REP. This latter vector
consists of K P elements and by unstacking it we obtain a retuned estimate of the ﬂn (alg, N)s,
e.g., ﬁql (alg, \) equals the first K elements of X0, and so forth, while the other ﬁn(alg, A)s
for n ¢ {q1,...,9x} are now simply all-zeros vectors. Reshuffling the retuned ﬂn(alg, A)s
yields gp (alg, A)s that are strictly and simultaneously K sparse whose weightings yield the
best match to the noisy observation in the ¢ sense. Unlike the original solution estimate,
which is not necessarily simultaneously K-sparse, here we have enforced true simultaneous

K-sparsity. We may or may not have improved the MSE with respect to the true solution:
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MSE

Figure 3-5: MSEs of convex minimization methods before and after estimating
the sparsity profile and retuning the solution. Here MSE vs. ) is studied during
the 35 trial of the (SNR = 0dB, K = 3) denoising series. Fixing A and applying a given
algorithm yields the solution h(alg, A). Left plot: MSEs of the h(alg, A)s vs. the true solution
h¢ot. Right plot: MSEs of the solution estimates after they undergo retuning to be strictly
and simultaneously K-sparse. (Sec. 3.4.2 outlines the retuning process.) For all algorithms
and As, MSE increases substantially relative to the left plot. No method correctly estimates
the true K-term sparsity profile and thus the retuning step causes every estimated solution
to branch further away (in the MSE sense) from the actual one.

for example, if we have grossly miscalculated the sparsity profile, the MSE of the retuned
solution is likely to increase substantially, but if we have estimated the true sparsity profile
exactly, then the retuned solution will likely be quite close (in the #; sense) to the true

solution, and MSE will thus decrease.

The MSEs of these retuned solutions with respect to the true hyot are plotted in the
right subplot of Fig. 3-5. For all algorithms and As, MSE has increased relative to the left
subplot, which means that in every case our estimate of the true underlying solution has
worsened. This occurs because across all algorithms and As in Fig. 3-5, the true K-term
sparsity profile is incorrectly estimated and thus the retuning step makes the estimated
solution worse. The lesson here is that if one is interested in minimizing MSE in low-to-
moderate SNR regimes it may be best to simply keep the original estimate of the solution
rather than detect the sparsity profile and retune the result. If one is not certain that
the sparsity profile estimate is accurate, retuning is likely to increase MSE by fitting the
estimated solution weights to an incorrect set of generating matrices. On the other hand, if
one is confident that the entire sparsity profile will be correctly identified with sufficiently

high probability, retuning will be beneficial; see [46,49, 53] for related ideas.
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3.4.3 MRI RF Excitation Pulse Design

from an Applied Mathematical Perspective
Overview

For the final experiment we study how well the six algorithms design MRI RF excitation
pulses. Because the conversion of the physical problem into an MSSO format involves MRI
physics and requires significant background, we only briefly outline how the system matrices
arise and why simultaneously sparse solutions are necessary. A complete formulation of the

problem will be given in Ch. 5 and is also described in [157,167].

Formulation

For the purposes of this chapter design of an MRI RF excitation pulse reduces to the
following problem: assume we are given M points in the 2-D spatial domain, ry,...,ray,
along with N points in a 2-D “Fourier-like” domain, k1, ..., ky. Each r,, equals [z, ym]T,
a point in space, while each k, equals [km’n,ky,n]T, a point in the Fourier-like domain,
referred to as “k-space”. The rp,s and k,s are in units of centimeters (cm) and inverse
centimeters (cm™!), respectively. The k,s are Nyquist-spaced relative to the sampling
of the r,,s and may be visualized as a 2-D grid located at low k; and k, frequencies
(where “k,” denotes the frequency domain axis that corresponds to the spatial z axis).
Under reasonable assumptions, energy placed at one or more points in k-space produces a
pattern in the spatial domain; this pattern is related to the k-space energy via a Fourier-
like transform [102]. Assume we place an arbitrary complex weight g, € C (i.e., both a
magnitude and phase) at each of the N locations in k-space. Let us represent these weights
using a vector g = [g1,...,9n] € CV. In an ideal (i.e., physically-unrealizable) setting,
the following holds:

m=Ag, (3.39)

where A € CM*V is a known dense Fourier matrix® and the mth element of m € CM is the
image that arises at r,,, denoted m(r,,), due to the energy deposition along the N points
on the k-space grid as described by the weights in the g vector.

The goal now is to form a desired (possibly complex-valued) spatial-domain image d(r)

at the given set of spatial domain coordinates (the r,,s) by placing energy at some of

il K

SFormally, A(m,n) = jye n, where j = v/—1 and =y is a known lumped gain constant.
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the given k,, locations while obeying a special constraint on how the energy is deposited.
To produce the spatial-domain image, we will use a “P-channel MRI parallel excitation
system” (79, 113]—each of the system’s P channels is able to deposit energy of varying
magnitudes and phases at the k-space locations and is able to influence the resulting spatial-
domain pattern m(r) to some extent. Each channel p has a known “profile” across space,
Sp(r) € C, that describes how the channel is able to influence the magnitude and phase of
the resulting image at different spatial locations. For example, if S3(rs) = 0, then the 3rd
channel is unable to influence the image that arises at location rs;, regardless of how much
energy it deposits along ki, ...,ky. The special constraint mentioned above is as follows:
the system’s channels may only visit a small number of points in k-space—they may only
deposit energy at K <« N locations.

We now finalize the formulation of problem: first, we construct P diagonal matrices
Sy € CMXM guch that Sp(m,m) = Sp(rm),m = 1,...,M. Now we assume that each
channel deposits arbitrary energies at each of the N points in k-space and describe the
weighting of the k-space grid by the pth channel with the vector g, € CVN. Based on the
physics of the P-channel parallel excitation system, the overall image m(r) that forms is

the superposition of the profile-scaled subimages produced by each channel:

m=S;Ag; +---+SpAgp

=Fig+---+Fpgp (3.40)
= Ftotgtota
where m = [m(r1),...,m(ry)]T. Essentially, (3.40) is the real-world version of (3.39) for

P-channel systems with profiles S,(r) that are not constant across r.
Recalling that our overall goal is to deposit energy in k-space to produce the image d(r),
and given the special constraint that we may only deposit energy among a small subset of

the N points in k-space, we arrive at the following problem:

min  ||d —ml|2 s.t. the simultaneous K-sparsity of the gs, (3.41)
81:---,8p

where d € CM = [d(r1),...,d(rm)]T € CM and m is given by (3.40). That is, we seek out
K < N locations in k-space at which to deposit energy to produce an image m(r) that is

close in the {5 sense to the desired image d(r). Strictly and simultaneously K-sparse g,s
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are the only valid solutions to the problem.

One sees that (3.41) is precisely the MSSO system given in (3.2) and thus the algorithms
posed in Sec. 3.3 are applicable to the pulse design problem. In order to apply the convex
minimization techniques (IRLS, SOCP, RBRS, and CBCS) to this problem, the only addi-
tional step needed is to retune any given solution estimate g, (alg, A) into a strictly and
simultaneously K-sparse set of vectors; this retuning step is computationally tractable and
was described in Sec. 3.4.2’s “Closer Look” subsection.

Aside. An alternative approach to decide where to place energy at K locations in k-space
is to compute the Fourier transform of d(r) and decide to place energy at (k;, k) frequencies
where the Fourier coefficients are largest in magnitude [147]. This method does yield valid
K-sparse energy placement patterns, but in Ch. 5 and [157,162,167] we empirically show
that this technique is always outperformed by convex minimization approaches. Thus we

do not delve into the Fourier-based method here.

Experimental Setup

Using an eight-channel system (i.e., P = 8) whose profile magnitudes (the |Sy(r)[s) are
depicted in Fig. 2-6, we will design pulses to produce the desired complex-valued image
shown in the left subplot of Fig. 3-6. We sample the spatial (z,y) domain at M = 356
locations within the region where at least one of the profiles in Fig. 2-6 is active—this
region of interest is the field of excitation (FOX) discussed in Sec. 2.1.10.° The spatial
samples are spaced by 0.8 cm along each axis and the FOX has a diameter of roughly 20
cm. Given our choice of ry,...,r3ss, we sample the S(r)s and d(r) and construct the Sps
and d. Next, we define a grid of N = 225 points in (kz, ky)-space that is 15 x 15 in size
and extends outward from the k-space origin. The points are spaced by -2% cm ™! along each
k-space axis and the overall grid is shown in the right subplot of Fig. 3-6. Finally, because
we know the 356 rp,s and 225 k,s, we construct the 356 x 225 matrix A in (3.39, 3.40)
along with the Fps in (3.40). We now have all the data we need to apply the algorithms
and determine simultaneously K-sparse g,s that (approximately) solve (3.41).

We apply the algorithms and evaluate designs where the use of K € {1, ..., 30} candidate

points in k-space is permitted (in practical MRI scenarios, K up to 30 is permissible).

5Sampling points outside of the FOX where no profile has influence is unnecessary because an image can
never be formed at these points no matter how much energy any given channel places throughout k-space.
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Figure 3-6: Desired image and k-space grid. Left image: desired complex-valued image,
d(r). Medium-gray region = FOX; other regions denote locations where we want image to
be nonzero with the given magnitudes and phases. Sampling d(r) at the 356 locations
within the FOX allows us to construct d in (3.41). Right subplot: 15 x 15 grid of N = 225
candidate k-space locations, ki, ..., kaos, at which the P channels may deposit energy and
thus influence the resulting image. The physical constraints of the MRI excitation process
force us to place energy at only a small number of grid locations.

Typically, the smallest K possible that produces a version of d(r) to within some ¢ fidelity
is the design that the MRI pulse designer will use on a real system since this will correspond

to the shortest pulse that accomplishes the desired task.

To obtain simultaneously K-sparse solutions with MP and LSMP, we set K = 30,
run each algorithm once, remember the ordered list of chosen indices, and back out every
solution for K =1 through K = 30 via the retuning technique of Sec. 3.4.2.

For each convex minimization method (IRLS, SOCP, RBRS, and CBCS), we apply the
following procedure: first, we run the algorithm for 14 values of \ € [0, %], storing each
resulting solution, g;.;(alg, A). Then for fixed K, to determine a simultaneously K-sparse
deposition of energy on the k-space grid, we apply the retuning process of Sec. 3.4.2 to each
of the 14 solutions, obtaining 14 strictly simultaneously K-sparse retuned sets of solution
vectors, ’g\g?(alg, A). The one solution among the 14 that best minimizes the £y error
between the desired and resulting images, ||d — Ftotgg:) (alg, A)|l2, is chosen as the solution
for the K under consideration. Essentially, we again assume we know a good value for A
when applying each of the convex minimization methods. To attempt to avoid convergence

problems, RBRS and CBCS are permitted 5,000 and 10,000 maximum outer iterations,

respectively (see below).
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Figure 3-7: MRI pulse design results. Left subplot: £5 error vs. K is given for MP,
LSMP, IRLS, RBRS, CBCS, and SOCP. For fixed K, LSMP consistently outperforms
the other algorithms. Right subplot: objective function values vs. A when SOCP, CBCS,
RBRS, and IRLS attempt to minimize (3.3, 3.8). SOCP and IRLS converge and seem to
minimize the objective; RBRS does so as well for most As. CBCS routinely fails to converge
even after 10,000 iterations and thus its solutions yield large objective function values.

Results

Image €5 Error vs. Number of Energy Depositions in k-Space. Figure 3-7’s left subplot shows
the £ error versus K curves for each algorithm. As K is increased, each method produces
images with lower 5 error, which is sensible: depositing energy at more locations in k-space
gives each technique more degrees of freedom with which to form the image. In contrast to
the sparsity profile estimation experiments in Sec. 3.4.1 and Sec. 3.4.2, however, here LSMP
is the best algorithm: for each fixed K considered in Fig. 3-7, the LSMP technique yields
a simultaneously K-sparse energy deposition that produces a higher-fidelity image than all
other techniques. For example, when K = 17 LSMP yields a solution that leads to an
image with £y error of 3.3. In order to produce an image with equal or better fidelity, IRLS,
RBRS, and SOCP need to deposit energy at K = 21 points in k-space, and thus produce
less useful designs from an MRI perspective. CBCS fares the worst, needing to deposit
energy at K = 25 grid points in order to compete with the fidelity of LSMP’s K = 17
image.

Closer Look: Objective Function vs. A. The right subplot of Fig 3-7 shows how well
the four convex minimization algorithms minimize the objective function (3.3, 3.8) before
retuning any solutions and enforcing strict simultaneous K-sparsity. For each fixed A, SOCP
and IRLS find solutions that yield the same objective function value. RBRS’s solutions

generally yield objective function values equal to those of SOCP and IRLS, but at times
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Figure 3-8: Convergence behavior of IRLS, SOCP, RBRS, CBCS. Each subplot
illustrates the value of each algorithm’s objective function (3.3, 3.8) as the algorithm iterates.
Upper row subplots are scaled to have the same y axis, whereas the bottom row subplots
are “zoomed out” to illustrate the overall behavior of RBRS and CBCS. IRLS and SOCP
converge rapidly, within 4 and 19 iterations, respectively. RBRS and CBCS require roughly
150 and 10,000 iterations, respectively. The runtimes of IRLS, SOCP, RBRS, and CBCS in
this case are 29, 121, 450, and 5,542 seconds.

lead to higher values: in these cases RBRS almost converges but does not do so completely.
Finally, for most As CBCS’s solutions yield extremely large objective function values; in
these cases CBCS completely fails to converge.

Closer Look: Objective Function Convergence for A = 0.025. The right subplot of Fig 3-
7 shows that for A = 0.025, IRLS, SOCP, RBRS, and CBCS generate solutions that yield
the same objective function value, suggesting that each method succeeds at minimizing the
objective function. Figure 3-8 illustrates how the algorithms converge in this specific case:
each subplot tracks the value of an algorithm’s objective function as it iterates. Subplots
along the top row all have the same y axis, giving a close look at how the algorithms
behave. The two subplots along the bottom row “zoom out” along the y axis to show
RBRS’s and CBCS’s total behavior. IRLS and SOCP converge rapidly, within 4 and 19
iterations, respectively. RBRS requires roughly 150 outer iterations, while CBCS requires
nearly 10,000.

Runtimes and Peak Memory Usage. Setting K = 30, we run MP and LSMP and record
the runtime of each. Across the 14 As, IRLS, RBRS, CBCS, and SOCP’s runtimes are

recorded and averaged. The peak memory usage of each algorithm is also noted; these
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Algorithm | Runtime | Peak Memory Usage (MB)
MP 11 sec 704
LSMP 46 min 304
IRLS 50 sec 320
RBRS 87 min 320
CBCS 3.3 hr 320
SOCP 96 sec 432

Table 3.2: Algorithm runtimes and peak memory usage for MRI pulse design.
Each algorithm’s runtime and peak memory usage is listed. The runtimes of the latter four
algorithms are averaged over the fourteen As per trial. MP is again faster than the other
techniques, but consumes more memory because of its precomputation step (see Algorithm
3.1). IRLS and SOCP are quite similar performance-wise and minimize the convex objective
function equally well (see Fig. 3-7), but we see here that IRLS is approximately 1.9 times
faster and uses 1.4 times less peak memory than SOCP, making the former the superior
technique among the convex methods.

statistics are presented in Table 3.2. In distinct contrast to the smaller-variable-size ex-
periments in Sec. 3.4.1 and Sec. 3.4.2 where all four convex minimization methods have
relatively short runtimes (under one second), here RBRS and CBCS are much slower, leav-
ing IRLS and SOCP as the only feasible techniques among the four. Furthermore, while
LSMP does indeed outperform IRLS and SOCP on an ¢ error basis (as shown in Fig. 3-7),
the runtime statistics here show that LSMP requires order-of-magnitude greater runtime to
solve the problem—therefore, in some real-life scenarios where designing pulses in less than
5 minutes is a necessity, IRLS and SOCP are superior. Finally, in contrast to Sec. 3.4.1’s
runtimes given in Table 3.1, here IRLS is 1.9 times faster than SOCP and uses 1.4 times
less peak memory, making it the superior technique for MRI pulse design since IRLS’s 4>
error performance and ability to minimize the objective function (3.3, 3.8) essentially equal

that of SOCP.

Closer Look: Images and Chosen k-Space Locations for K = 17. To conclude the
experiment, we fix K = 17 and observe the images produced by the algorithms along with
the points at which each algorithm chooses to deposit energy along the grid of candidate
points in (kz, ky)-space. Figure 3-9 illustrates the images (in both magnitude and phase)
that arise due to each algorithm’s simultaneously 17-sparse set of solution vectors,” while

Fig. 3-10 depicts the placement pattern chosen by each method. From Fig. 3-9, we see

"Each image is generated by taking the corresponding solution Etot» computing m in (3.40), unstacking
the elements of m into m(r), and then displaying the magnitude and phase of m(r).
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that each algorithm forms a high-fidelity version of the desired image d(r) given in the
left subplot of Fig. 3-6, but among the images, LSMP’s most accurately represents d(r)
(e.g., consider the sharp edges of the LSMP image’s rectangular box). MP’s and CBCS’s
images are noticeably fuzzy relative to the others. The placements in Fig. 3-10 give insight
into these performance differences. Here, LSMP places energy at several higher frequencies
along the k, and k, axes, which ensures the resulting rectangle is narrow with sharp edges
along the spatial ¥y and = axes. In contrast, CBCS fails to place energy at moderate-to-
high (k, ky)-space frequencies and thus cannot produce a rectangle with desirable sharp
edges, while MP branches out to some extent but fails to utilize high &, frequencies. IRLS,
RBRS, and SOCP branch out to higher k, frequencies but not to high k; frequencies,
and thus their associated rectangles in Fig. 3-9 are sharp along the y axis but exhibit less
distinct transitions (more fuzziness) along the spatial = axis. In general, each algorithm
has determined 17 locations at which to place energy that yield a fairly good image and
each has avoided the computationally impossible scenario of searching over all N-choose-K

(225-choose-17) possible placements.

3.5 Discussion

3.5.1 MRI Pulse Design vs. Denoising and Source Localization

The MRI pulse design problem in Sec. 3.4.3 differs substantially from the source localization
problem in Sec. 3.4.1, the denoising experiment in Sec. 3.4.2, and other routine applications
of sparse approximation (e.g. [24, 31,32, 38,44, 49,92]). It differs not only in purpose but
in numerical properties, the latter of which are summarized in Table 3.3. While this list
will not always hold true on an application-by-application basis, it does highlight general

differences between the two problem classes.

3.5.2 Merits of Row-by-Row and Column-by-Column Shrinkage

Even though LSMP, IRLS, and SOCP tend to exhibit superior performance across different
experiments in this manuscript, RBRS and CBCS are worthwhile because unlike the former
methods that update all PN unknowns concurrently, the shrinkage techniques update only

a subset of the total variables during each iteration.
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Figure 3-9: MRI pulse design: images per algorithm for K = 17. Each algorithm is
used to solve the MRI pulse design problem using 17 energy depositions along the k-space
grid, attempting to produce an image close to the desired one, d(r), given in the left subplot
of Fig. 3-6. From each set of simultaneously 17-sparse solution vectors, we calculate the
resulting image via (3.40) and display both its magnitude and phase. LSMP’s image best
resembles the desired one; IRLS’s, RBRS’s, and SOCP’s images are nearly as accurate;
MP’s and CBCS’s images lack crisp edges, coinciding with their larger ¢5 errors.

97



-0.5

-0.5

-0.5

205 0 05 -0.5

Figure 3-10: MRI pulse design: energy deposition patterns per algorithm for
K = 17. Each algorithm’s placement of energy in k-space is displayed. LSMP branches
out to moderate k, frequencies and high k, frequencies, partly explaining the superiority
of its image in Fig. 3-9. IRLS, RBRS, and SOCP succeed in branching out to higher ky
frequencies but do not place energy at |k;| > 0. MP and CBCS fail to spread their energy
to high spatial frequencies, and thus their images in Fig. 3-9 lack distinct edges and appear

as “low-pass filtered” versions of d(r).
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MRI Pulse Design

Denoising and Source Localization

e F s overdetermined

e No concept of noise: given d is dirye
e Sweep over \ useful

e Metric: ||d — ml||;

e F;s underdetermined

o Noisy: given d is not dirye

e Ideal A unknown

o Metrics: ||8or — 8otll2, and/or
fraction of rec. sparsity profile terms

Table 3.3: Unique trends of the MRI pulse design problem. This table highlights
differences between the MRI problem and standard denoising and source localization appli-
cations. Items here will not always be true, instead providing general highlights about each

problem class.
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For example, RBRS as given in Algorithm 3.5 updates only P unknowns at once, while
CBCS as given in Algorithm 3.6 updates but a single scalar at a time. RBRS and CBCS
are thus applicable in scenarios where P and N are exceedingly large and tuning all PN
parameters during each iteration is not possible. If storing and handling M x PN or
PN x PN matrices exceeds a system’s available memory and causes disk thrashing, RBRS
and CBCS, though they require far more iterations, might still be better options than
LSMP, IRLS, and SOCP in terms of runtime.

3.6 Conclusion

We defined the linear inverse multiple-system, single-output (MSSO) simultaneous sparsity
problem where simultaneously sparse sets of unknown vectors are required as the solution.
This problem differed from prior problems involving multiple unknown vectors because
in this case, each unknown vector was passed through a different system matrix and the
outputs of the various matrices underwent linear combination, yielding only one observation
vector.

To solve the proposed MSSO problem, we formulated three greedy techniques, matching
pursuit, orthogonal matching pursuit, and least squares matching pursuit, along with algo-
rithms based on iteratively reweighted least squares, iterative shrinkage, and second-order
cone programming methodologies. The MSSO algorithms were evaluated across noiseless
and noisy sparsity profile estimation experiments as well as a magnetic resonance imag-
ing pulse design experiment; for sparsity profile recovery, algorithms that minimized the
relaxed convex objective function outperformed the greedy methods, whereas in the noise-
less magnetic resonance imagine pulse design experiment, greedy LSMP exhibited superior
performance.

Finally, when deriving CBCS for complex-valued data, we proved that seeking a single
sparse complex-valued vector is equivalent to seeking two simultaneously sparse real-valued
vectors—we mapped single-vector sparse approximation of a complex vector to the MSSO
problem, increasing the applicability of algorithms that solve the latter.

Overall, while improvements upon these seven algorithms (and new algorithms alto-
gether) surely do exist, we have laid the groundwork of the MSSO problem and conducted

an initial exploration of algorithms with which to solve it.
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Chapter 4

Comparison of Three Algorithms
for Solving Linearized Systems of
Parallel Excitation Pulse Design

Equations: Experiments on an

Eight-Channel System at 3 Tesla

4.1 Introduction

In this chapter we investigate three algorithms for solving the linearized system of parallel
excitation RF waveform design equations given in (2.14, 2.15) by conducting several exper-
iments. The artifact levels and RF peak and root-mean-square (RMS) voltages of pulses
generated by each method are analyzed along with algorithm runtime. The pulses calcu-
lated using these methods are used in both Bloch simulations and imaging experiments
on an actual 8-channel parallel excitation coil array implemented on a 3T human scanner.
Specifically, RF waveforms are designed for accelerated 2-D spiral k-space trajectories to
produce a variety of 2-D target excitations and for a 3-D spokes trajectory to produce a
uniform thin-slice excitation. The material of this chapter first appeared in [165,166] and
is patented [150].

In Experiment 1 (E1), pulses are designed using each algorithm to produce a square
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target pattern for R = 1, 4, 6, and 8 spiral trajectories. For each algorithm and R value,
the mean-square error (MSE) between the resulting Bloch-simulated excitation and target is
calculated, which quantifies each method’s excitation artifacts. Each waveform’s peak volt-
age, Vpeak, and root-mean-square (RMS) voltage, Vrus, are also determined. In Experiment
2 (E2), the trajectories are again spirals and the target is a text logo. In addition to Bloch
simulation analyses, the waveforms are played through a fully-implemented eight-channel
parallel excitation system at 3T and actual excitations are analyzed. In Experiment 3 (E3),
the trajectory is a fixed set of “spokes” in k. that sample the (k;,k,)-plane to achieve
slice selection in z [108,113,132] and the in-plane target is a uniform pattern. Finally, in
Experiment 4 (E4), the trajectory is an R = 8 spiral and the target is again the text logo.
Thousands of pulses are designed by looping over each method’s primary control param-
eter, which provides extensive empirical data that shows how well each method trades off

excitation quality with Vjeax and Vrus.

For each experiment, after fixing the target and trajectory, the Bloch equations relating
the RF waveforms and target excitation are first linearized using the formalism of [59] as
presented in Sec. 2.1.11, to which the reader may refer if the notation or formulation of the
matrices here seems unfamiliar. After linearizing the system, each design method is used to
generate a set of pulses. The methods have different regularizations and implementations
that influence their optimization criteria and finite-precision arithmetic effects, which in turn
strongly affect the resulting pulses, causing each method to produce a unique waveform and

excitation.

The first design algorithm involves an approximate pseudoinverse generated via singular
value decomposition (SVD), a popular approach for least-squares problems whose use is
analytically justifiable [51,118]. The other methods are Conjugate Gradient Least-Squares
(CGLS) and Least-Squares QR (LSQR), iterative CG optimization algorithms for solving
large linear systems [62,100,101]. An early use of an MRI-related CG method was the
reconstruction of sensitivity encoded (SENSE) data by Pruessmann and Kannengie8er [76,
104,105]. More recently, CG methods have been used to design pulses for a single-channel

system [146] and an emulated parallel excitation system [59].
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4.2 Multi-Channel Parallel Excitation Pulse Design

Following the approach of [59] outlined in Sec. 2.1.11, we arrive at the system of equations
given in (2.15) that allows us to design parallel excitation pulses to play through a P-channel

system. We restate this system below for easy reference:
d = Ab, (4.1)

where we have chosen to use A and b in place of the more cumbersome variables Aot
and by, and we assume that the coil profiles Si(r),...,Sp(r) are known. The vector d
consists of Ny elements, while A and b are of size Ny x PNy and PN, X 1, respectively; all
three of these terms may be complex-valued. For all experiments considered in this chapter,
N, = 1466.

Recall that choosing a desired excitation pattern d(r) and k-space trajectory k(t) im-
plicitly determines d and A, where d is N5 x 1, formed by ordering the elements of d(r)
within the FOX. It is then necessary to find a candidate vector b that approximately solves
d = Ab. Once b is found, voltage samples of the P waveforms (b1(t),...,bp(t)) may
be extracted, played through a Bloch simulation or actual system, and an excitation pat-
tern may be recorded, the latter of which will resemble the target if the small-tip angle

approximation [102] holds and the SNR is sufficient.

4.3 Three Algorithms for Solving a Linear System

4.3.1 SVD-Based Truncated Pseudoinversion

One may solve (4.1) via a truncated pseudoinverse generated by an SVD [51,118], seeking
a solution that minimizes ||d — Ab||2. This is accomplished with the Moore-Penrose pseu-
doinverse of A, denoted as A, yielding b°®* = Afd. To generate AT an SVD is used to
decompose A into UEVH, where U and V are Ny x N and PN; x PN, eigenvector matrices
and ! is the complex transpose. If A is of rank J < min(Ng, PN;), then ¥ is N, x PN;
and diagonal, and its diagonal elements ¢; > ... > o5 > 0 are the nonzero singular values

(SVs) of A. Formally,

J
AT =vErU" =) o7 tvull, (4.2)
j=1
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where u; and v, are the jth columns of U and V, and £7 is implicitly defined. When
A is ill-conditioned, (4.2) yields a poor candidate for b because it uses all nonzero SVs,
even those representing only the system’s noise subspace. However, by retaining only the
first K < J singular values and avoiding the use of the smaller ones, a better-conditioned

truncated pseudoinverse is obtained:

K
A}{ = Za;lvkuﬂ, (4.3)

k=1
allowing one to obtain a better-conditioned estimate bg = A;{d. Therefore, K is this
method’s control parameter: as it is increased, the error ||[d — Abg/|2 decreases whereas
the energy of the solution vector, ||[bx||2, increases. One typically applies this method
by retaining just enough SVs to yield a solution with acceptably low residual error while
keeping ||b|l2 as small as possible. For large matrices this algorithm is slow because it

computes an SVD, but for fixed K there exist fast methods to compute A}( directly.

4.3.2 Conjugate Gradient Least-Squares (CGLS)

This algorithm solves the following optimization problem:
min || (A"A + AcarsT) b — AMd(, (4.4)

where AcgLs is a regularization term. One sees from (4.4) that as AcqLs is increased,
|bll2 decreases and residual error ||r|j2 = |[d — Ab||2 increases. CGLS does not perform an
SVD and requires only 2N + 3PN; complex multiplications per iteration 7. When AggLs
is zero, CGLS is identical to Hestenes and Stiefel’s iterative CG method for least-squares
problems [62].

Pseudocode for CGLS is given in Algorithm 4.1 and shows how the sequence of approxi-
mations b; is generated. Analytically, the b; are such that the residual error ||r;||2 decreases
monotonically [62]. When solving (4.4), users may restrict the number of iterations or spec-
ify a threshold e such that CGLS halts when ||s;||2/|so/|2 < e. CGLS may also incorporate
preconditioning matrices, weighted norms, and initial conditions.

CGLS is similar to Sutton et al.’s CG method (SCG) [121] used in [146] and [59] for
pulse design because both CGLS and SCG are based on the Hestenes-Stiefel method. Step
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Algorithm 4.1 Conjugate Gradient Least Squares (CGLS)

1. Set rg = d7 Sy = zQHd7 P1 =580, Y0 = HSQ”%, bo =0= [0, - ,O]T
2. Fori=1,2,... repeat the following:

(a) q = Ap, (Hestenes and Stiefel’s intermediate vector)

(b) & = |lq;|13 + A\cars||p;||3 (incorporate regularization term)

(c) a; =vi—1/6; (calculate step size)

(d) bZ = b,;_1 + a;p; (update set of RF waveforms)

(e) r; =r;_1 — a;q; (update residual error vector)

(f) s = APy, — Mcaisbi (incorporate regularization term)
(&) % = Il

(h) Bi =i/7i-1

() Piyr = i+ Bip

(j) Test for convergence. Exit if a stopping criterion is met.

2(c) of CGLS given in Algorithm 4.1 shows that the numerator of the step size a; equals
|lsi—1]|2, and thus is guaranteed to be nonnegative real (zero if an exact solution is reached).
The numerator of SCG’s step size, however, is pi's;_1 = (s;_1 + 8ip;_1)si—1, and thus not
guaranteed to be positive. We confirmed this numerically by providing SCG with randomly

generated inputs and consistently observing complex-valued step sizes.

4.3.3 Least-Squares QR (LSQR)

This algorithm is an implementation of Tikhonov regularization and solves large linear
least-squares problems in a numerically attractive manner [123,124]. Its name comes from
its use of the QR decomposition [51,118]. The algorithm has one regularization parameter,

ALsQR, and solves the following:
min (|l - A + Asor IbI3) (4.5)

As Arsqr is increased, more weight is placed on the energy of b than on the residual error,
causing ||bl|2 to decrease and ||d — Ab||2 to increase. LSQR also avoids use of an SVD; it
requires 3N, + 5PN; complex multiplications per iteration. Pseudocode for LSQR when
ALsqr = 0 is given in Algorithm 4.2, based on Sec. 4 of [101].

LSQR, like CGLS, generates b; such that |r;||o decreases monotonically, but LSQR
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Algorithm 4.2 Least-Squares QR (LSQR)

1. Initialize and begin the bidiagonalization.
Brur =d, eqvi = AMluy, wi=vi, bg=0,06=51, 5=

2. For i =1,2,... repeat steps 3 through 6

3. Continue the bidiagonalization.

(a) Bit1ui41 = Av; — a;u;

(d) aip1vier = Aluy — Bav;

4. Construct and apply orthogonal transformation.

5. Update b, w.

(a) by =bi_1 + (¢s/pi)Wi)
(b) wWit1 = viy1 — (Bip1/pi) Wi

6. Test for convergence. Exit if a stopping criterion has been met.

performs better in practice [13,101] due to its unique restructuring of the input system
(via the Lanczos process [86] and Golub-Kahan bidiagonalization [50]) prior to solving it.
Empirical studies have shown that LSQR finds solutions with lower residual error than
CGLS when A is ill-conditioned, and of similar fidelity when A is well-conditioned [13,
101]. Further description of how LSQR applies the Lanczos process and Golub-Kahan

factorization, along with pseudocode when Arsqr # 0, is located in [100,101].

In addition to the above, LSQR’s stopping rules are carefully designed to reflect the
data’s accuracy. Relative to CGLS’s stopping rule, LSQR’s ensures it always shuts down
sooner and its corresponding b estimate is equally acceptable. This advantage becomes

more pronounced as A’s conditioning worsens [101].! Note that while LSQR indeed requires

!This was also confirmed directly by M. A. Saunders, one of the creators of LSQR.
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N; + 2PN, more complex multiplications per iteration than CGLS, this is mitigated by the

fact that LSQR often requires fewer iterations to attain a similar-fidelity solution.

4.4 Quality Metrics

4.4.1 Image Quality Evaluation

For each experiment we conduct, we generate a 2-D image, o(z,y), either via a Bloch
simulation or by performing an excitation on the 8-channel system. We then evaluate the
quality of o(z,y) by using metrics that quantify how closely it matches the target pattern

d(z,y), each of which is explained below.

Mean-squared error (MSE). This measures how close o(z,y) is to d(z,y) over a

chosen region of interest (ROI):

- —d(z,y)? 4.
(zy)ez
where Z is a set of coordinates that implicitly defines the spatial ROI over which the MSE

is computed, and card(Z) is the cardinality, or number of elements, of Z.

Second-order statistics. Computing the mean u and standard deviation o of o(z,y)
in different ROIs quantifies the severity of artifacts and noise present within each, e.g., if
the target is uniform in a particular ROI, a small ¢ implies that o(z,y) closely matches
d(z,y) in that region.

Peak value. The maximum value in an ROI of o(z, y) quantifies the worst-case artifact
present, e.g., given two observations of the same target, larger peak values in one indicate

it has more artifacts than the other.

Note on non-MSE metrics. Recent RF pulse design work uses MSE to evaluate the
quality of an excitation, e.g., [59,146]. As an extension of this methodology, we make use
of non-MSE metrics in addition to MSE, because the latter is not always an ideal indicator
of excitation quality. E.g., Wang et al. provide an example of six images with identical
MSE, but three contain significant spike-like noise [138]. Using region-by-region peak value
and second-order statistics analyses on these images causes the noise-ridden ones to exhibit

worse scores, whereas MSE incorrectly indicates all images are of equal quality.
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4.4.2 RF Waveform Characterization

Consider a set of waveforms represented by the PN-element vector, b. The peak voltage,

Vinax, equals ||b]|c, and the aggregated RMS voltage is defined as

| PN
Vrms = (P_Nt z |b[n]|2> ; (4.7)
n=1

where b[n| is the nth element of b. For each set of waveforms, knowing Vipax allows us to
compare pulses’ relative peak powers. And since Vrus is proportional to both integrated
and average pulse power, comparing Vrms values of different pulses tells how much power
they dissipate relative to one another. Note that since b contains waveforms across all

excitation channels, Vpeax is the peak among all P waveforms.

4.5 Experiment Setup

System configuration. The parallel system is built around a Siemens 3T Tim Trio scanner
(Siemens Medical Solutions, Erlangen, Germany). The transmit array is composed of eight
circular, overlapped, 15-cm diameter, detunable surface coils arranged on a 28-cm diameter
acrylic tube [7]. All scans are performed in a 17-cm low-dielectric oil phantom. For each
RF design, the array’s eight channels are driven, modulated in magnitude and phase by the
pulses. Readouts are performed using a GRE sequence [12,89, 98] with a repetition time
(TR) of 30 ms, an echo time (TE) of 6 ms, and a bandwidth (BW) of 400 Hz/pixel.
Spatial profiles (B]” maps). Spatial profiles S;(r), ..., Sp(r) within the oil phantom
are obtained using the approach outlined in Sec. 2.1.13. Specifically, low-flip-angle pulse
is sent through each of the eight coil array elements, one at a time, and reception occurs
on the system’s body coil. B; maps are generated by recording a complex-valued image
via a gradient-recalled echo (GRE) sequence with TR, TE, and BW equal to 20 ms, 6 ms,
and 400 Hz/pixel, respectively, yielding 51 x 51 pixel, 4-mm resolution maps that capture
the magnitude and relative phase of each array element. The magnitudes of these profiles
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