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Abstract

Special magnetic resonance (MR) scans, such as spiral imaging and echo-planar imaging,
require speed and gradient accuracy while putting high demands on the MR gradient sys-
tem that may cause gradient distortion. Additionally, high field MR scans are prone to
inhomogeneities that disturb the gradient system. Regardless of the source, gradient char-
acterization provides a simple tool for distortion correction. An improved method, named
the self-encoded slice selection algorithm, of characterizing the gradient system of the mag-
netic resonance system is proposed. It improves and combines the self-encode method and
the direct slice selection method. The new approach is simple and fast, and allows for the
measurement of waveform gradients that reach the system’s limits. The technique is used
to model the gradient system as a linear time-invariant transfer function through frequency-
domain analysis and time-domain analysis. A transfer function model of the gradient system
on the 3T Siemens Tim Trio scanner is presented here along with the characterization and
analysis of common waveform gradients. Possible distortion correction approaches are also
suggested.
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Title: Assistant Professor of EECS & HST
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Chapter 1

Introduction

Of the major concerns of magnetic resonance (MR) studies, the work I present here will

primarily address the issue of accuracy of data acquisition. More specifically, precise knowl-

edge of data sample locations in the frequency k-space is crucial in MR scans. The accuracy

of k-space locations, determined by waveforms applied by the gradient hardware system,

will be the focus of this paper.

Modern MR scanners have developed a level of sophistication in which the majority of

the inaccuracies associated with the k-space locations (notated with functions kx(t) and

ky(t)) is eliminated through methods such as B0 shimming and eddy current suppression.

However, if high enough demands are placed on the gradient hardware, the MR system

may not properly correct these inaccuracies. Echo-planar imaging (EPI), spiral imaging,

and other fast MR scans are examples of applications that may require the application of

different waveform gradients that reach the MR system’s limits. Additionally, there is an

increasing interest in high field MR studies, such as scans with a main magnetic field of 7T.

At these high fields, gradient distortion is an issue.

Gradient characterization provides a tool to measure actual k-space locations and to

correct for any nonidealities caused by the scanner’s hardware inadequacies in high fields

or by the application of extreme waveform gradients. There is an assortment of different

algorithms that can accomplish this task. In one such technique, the gradient system hard-

ware can be modeled with inductors and resistors. Using the resulting simplified system,

k-space trajectories can be designed to minimize the amount of inhomogeneities present

in the scans [7]. Other proposed procedures steer away from modeling a specific scanner’s

13



hardware and, instead, use the excitation of different phantoms, inanimate MR test objects

usually filled with water, to characterize the waveform gradient. Point impulse samples

of tap water (on the order of 20µl) can be placed at different off-isocenter locations. The

waveform gradient in question can be extracted from the acquired data after exciting the

water samples and applying the test waveform gradient [5]. Other proposed methods use a

large arbitrarily-shaped phantom. The phantom is scanned using special pulse sequencing

designed to allow for easy extraction of the test waveform gradient through data processing

[6] that often involves Fourier analysis [2] [4].

I propose a new method of gradient characterization, the self encoded slice selection al-

gorithm, that is based on previous methods of arbitrarily-shaped phantom excitation. More

specifically, it is an improvement of the self-encode method developed by Onodera et al [6]

and of the direct slice selection method developed by Duyn et al [2]. The proposed algo-

rithm is fast, robust, and flexible in measuring waveform gradients that put high demands

on the MR gradient system.

Additionally, obtaining a gradient system transfer function through the use of previous

gradient characterization method provides an even more general method of determining

actual k-space trajectories [3]. Using the proposed technique, I will analyze the gradient

system with a transfer function and provide test examples of commonly used waveform

gradients: trapezoid gradient, spiral gradient, and EPI gradient.
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Chapter 2

Method

To understand the methodology used for the different characterization algorithms, some

background MR theory will be first presented in section 2.1. Next, in section 2.2, the

self encode method [6] and the direct slice selection method [2] will be analyzed to aid in

the explanation of the proposed self encoded slice excitation method. Lastly, the proposed

technique will be applied in modeling the gradient system as a linear time-invariant transfer

function using a frequency-domain approach and a time domain approach in section 2.3.

2.1 Background theory

Atoms with an odd number of protons or neutrons possess a nuclear spin angular mo-

mentum. MR studies consist of interacting with the spins of these atoms using different

magnetic fields. Hydrogen is the most commonly used atom for its sensitivity to magnetic

fields and its abundance in biological tissue.

The MR scan begins with a main magnetic B0 field that is applied to the test subject.

The B0 field creates a net spin momentum aligned with field itself. The molecules then

possess a resonance at a specific frequency (noted as the Larmor frequency). Next, a

radiofrequency (RF) pulse, emitted from the transmitter coils and tuned to the Larmor

frequency, is used to disturb the atoms of a designated slice. As the spins of the excited

slice precess back to the B0 field, gradients, G(t), are applied, and the exponentially decaying

signal is sampled through receiver coils. The magnetic spins decay with a time constant T1

along the B0 axis and a time constant of T2 along the plane perpendicular to B0.

The signal obtained through a T1-weighted MR scan can be expressed with the approx-
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imation:

s(t) =

∫

y

∫

x

m(x, y)ei[2πkx(t)x+2πky(t)y+b(t)]dxdy, (2.1)

where kx(t) and ky(t) with corresponding Gx(t) and Gy(t) are defined by the following

formula:

k(t) =
γ

2π

∫ t

0
G(τ)dτ. (2.2)

The quantity m(x, y) is the spin magnetization that can be extracted using two dimen-

sional Fourier transform analysis. The m(x, y) signal can then be processed to produce the

desired image or graph. The Fourier transform calculation requires accurate knowledge of

kx(t) and ky(t), locations of samples in the Fourier transform of the signal, FT {m(x, y)}.

The problem being addressed by gradient characterization is the accuracy of this correspon-

dence.

There are some MR specific terminology used throughout this paper. The sequence

repetition time, TR, is the time between each RF excitation pulse. The gradient echo

time, TE, is the time from the RF excitation pulse to when the read-out data is acquired.

Additionally, k-space, with kx, ky, and kz coordinates, is used to notate the MR Fourier-

domain.

2.2 Gradient characterization methods

There exist many different methods that can characterize the gradients, G(t), played by

the gradient coils of the MR scanner. Additionally, from those methods, the actual k-space

trajectory can be measured since the k-space trajectory is the integral of the characterized

G(t), as seen in equation 2.2.

For this thesis, procedures using an arbitrary phantom are analyzed and tested because

these algorithms do not require detailed knowledge about the hardware of a specific scanner.

Also, they do not need a unique hardware implementation or unique phantom construction

for each measurement. The test waveform gradient in question can be characterized using

a regular spherical phantom with standard receiver coils. In sections 2.2.1 and 2.2.2, I will

describe techniques that were previously used along with their advantages and disadvan-

tages. In section 2.2.3, I will propose a new method that makes use of both of the previous

algorithms’ advantages.
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2.2.1 Self-encode method

Onodera et al proposed the self-encode gradient characterization method [6]. In this

method, a large phantom is excited and a one-dimensional test gradient waveform is sent

through the gradient coils. The waveform can be measured through post-processing of the

acquired data.

Takahashi et al extended this algorithm to measure the gradients in two spatial dimen-

sions. The measured data are then used to minimize waveform distortion and improve the

excitation profile [8]. I used a variant of the procedure proposed by Takahashi et al for my

analysis.

In the method of Takahashi et al, a slice of a large phantom is excited with a normal

low flip RF pulse. The resulting signal will be the Fourier transform of the large excited

phantom, which is a very narrow sinc function centered around the origin. Qualitatively

speaking, the signal has a peak at the origin.

After the excitation pulse, a conventional phase-encode gradient (also known as “self-

encode” gradient) is played out on the axis with the test waveform gradient in question.

Since these self-encode gradients must be accurate and well-formed, they are designed to

be well within the MR system’s maximum gradient amplitude and maximum slew rate

(how fast the gradient hardware is altering the gradient strength, dG(t)
dt

). The self-encode

gradients off-set the k-space location by a fixed amount: kse(n) for the n-th self-encode.

For the implementation of the self-encode algorithm, I create my own self-encode gra-

dients to ensure I get the maximum resolution in the shortest amount of time. To do this,

the maximum kse(n) offset is set to kmaxPse. The variable kmax is the maximum k-space

point that the test waveform reaches, and the variable Pse is a scaling factor that increases

the self-encode gradient amplitude to reach k-space points beyond kmax. The number of

self-encode amplitudes, Nse, is a parameter that controls the resolution of the gradient

characterization. The offset kse(n) can be expressed as

kse(n) = kmax − n

(

2kmaxPse

Nse − 1

)

where n = 0, 1, 2, . . . Nse − 1. (2.3)

After the self-encode gradient is played, the test waveform gradient G(t) to be charac-

terized is applied. For a general c-axis, the resulting k-space point at time t with self-encode

17



RF

Gz

slice select

self-encode test waveform self-encode rewind

Gx

Gy

off on

ADC

Figure 2-1: Sequence for self-encode method characterizing a test waveform gradient on the
x-axis.

n can be given by the following equation:

kc(n, t) = kse(n) + kc(t) (2.4)

where (from equation 2.2)

kc(t) =
γ

2π

∫ t

0
Gc(τ)dτ. (2.5)

Note that time t is equal to 0 at the start of Gc(t). The sequence events can be sum-

marized in figure 2-1. In this figure, a sinusoidal test waveform on the x-axis is being

characterized. The signal is read when the analog to digital converter (ADC) is turned on.

The self-encode loops are played before the test waveform gradient, and a rewinder is used

after the test gradient to return the system back to origin in k-space, where kx = 0.

Because a large phantom is excited at the isocenter, the signal has a peak when k(n, t) =

0. Since k(n, t) and kse(n) are known values, the points on the test k-space trajectory can

be estimated as

kc(t) = k(n, t) − kse(n). (2.6)

The collected data can be placed in a two-dimensional array with time t as one axis and

the self-encode number n as the other axis. For a given t = t0, there is an associated array

in the self-encode dimension. The data of that array contains the Fourier transform of the

18



excited phantom shifted from the origin by −kc(t0). The point −kc(t0) can be determined

by finding the maximum value of the array.

To make the technique more robust and to increase the k-space resolution, a fitting

algorithm is used to find a more accurate estimation of −kc(t0). The sampled data can

be fitted with a polynomial (proposed by Takahashi et al [8]), a Gaussian, or even a sinc.

Knowing the ideal one-dimensional image of the given phantom allows for a better fitting.

Additionally, given a large enough value for kmax, the phase can be extracted from

FT {k(n, t0)}, the Fourier transform of the data along the self-encode axis [1]. Since k(n, t0)

is an image of the phantom shifted by −kc(t0), the amount of shift −kc(t0) can be extracted

from the phase of FT {k(n, t0)}. The phase is a linear function whose slope is proportional

to −kc(t0).

The linear phase fitting method is much more robust and requires fewer data points

compared to polynomial or Gaussian fitting. However, the method cannot be used for

test waveform gradients with values of kmax that are too small. With a smaller kmax,

the FT {k(n, t0)} image has zero-crossings closer to the origin. In these cases, the phase

becomes less and less accurate. For a 180mm outer diameter spherical phantom, I found

that the test waveform gradients that can be characterized using linear phase fitting must

have a kmax that satisfies this inequality: kmax ≥ 1000m−1. For my experiments, I used

the linear phase fitting method for kmax ≥ 1000m−1 and the Gaussian peak-fitting method

for kmax < 1000m−1.

Time-varying distortions b(t) caused by factors such as eddy currents can be measured

and removed from the characterization. Using a Fourier transform technique, the time-

varying distortion can be corrected with additional characterization data of an inverted test

waveform gradient [1]. The solution can be seen in the following analysis. For measuring

the test waveform gradient on the x-axis, these equations apply: kx(n, t) = kse(n) + kx(t)

(obtained directly from equation 2.4) and ky(t) = 0 (since the gradient on the y-axis is

turned off). Through some manipulation, equation 2.1 can be rewritten as a function of n

and t:

s(n, t) =

∫

x

m(x)ei[2π(kse(n)+kx(t))x+b(t)]dx. (2.7)

Applying a one-dimensional Fourier-transform along the self-encode direction of equation
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2.7 yields

FT {s(n, t)} = m(x)ei[2πkx(t)x+b(t)]. (2.8)

The phase of equation 2.8, φ(x, t), can be extracted to be

φ(x, t) = 2πkx(t)x + b(t)

= 2πkx(t)x + bo(t) + be(t), (2.9)

where bo(t) is the odd part of b(t), and be(t) is the even part of b(t). Data from objects

scanned are real in the image domain, meaning that the phase function, φ(x, t), is odd

with respect to x. Measuring an inverted waveform gradient yields a phase of φ−(x, t) =

−2πkx(t)x − bo(t) + br(t). The corrected k-space trajectory becomes

k(t) =
(φ+(x, t) − φ−(x, t))

2

= 2πkx(t)x + bo(t). (2.10)

The self-encode method does not require any additional hardware or specially con-

structed phantoms. The algorithm can be performed using a standard setting of the scanner

and with any large arbitrary phantom. Given the nature of the method, a large advantage

of this technique is that the gradient coils can be pushed to their manufacture limits, at

maximum slew rate and amplitude, and still have the waveform gradients be characterized.

This procedure becomes quite useful when analyzing the gradient distortion that need speed

and reach to extreme values of k-space.

The self-encode method presents a few drawbacks however. First, the sequence requires

a long scan time and also a long reconstruction time. For a TR of 300ms and a resolution

of 80, a scan time of 0.3s × 80 = 24s is required. To correct for time-varying distortion

with the inverted test waveform, the scan duration is then doubled. Added to that, in

reconstruction, either the linear phase fitting or the peak fitting algorithm is performed

on multiple different arrays, requiring a nontrivial amount of processing time. Second, the

method assumes that the self-encode loops themselves are well-formed and accurate. Any

inconsistencies with these encode loops will make the characterization inaccurate. Lastly,

although the procedure can be performed with any arbitrary phantom, the reconstruction

algorithm is still dependent on the size and shape of the phantom. The method requires
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additional work to fine-tune the parameters for each specific phantom.

2.2.2 Slice selection method

In comparison to the self-encode method, the voxel/slice excitation method requires sig-

nificantly less scan time and reconstruction time. Gradient characterization using a slice

excitation was first proposed by Duyn et al [2]. Kim et al extended the slice selection

method to excite voxels for spectroscopic imaging [4]. The slice selection method and the

voxel excitation method are similar to the procedure proposed by Mason et al [5]. The

main difference is that in Mason’s method a small reference phantom is used; in these other

methods the excitation singles out positions where the small phantom would have been.

I analyzed and tested the algorithm proposed by Duyn et al. In this method, a number

of off-isocenter slices are excited and the k-space trajectory is extracted from the phase.

To characterize the gradient, the measured gradient can be computed from the k-space

trajectory.

To measure the k-space trajectory on the x-axis, a thin slice in the yz-plane is excited at

a position x0 away from isocenter. The test waveform gradient Gx(t) (with a corresponding

kx(t) trajectory) is then played on the x-axis (figure 2-2(a)). In the signal equation 2.1, the

signal m(x, y) can be approximated to an impulse on the x-axis, or m(x, y) = δ(x − x0).

Additionally, with the gradients in the y-axis turned off, the value of ky(t) is equal to 0.

Equation 2.1 can be simplified to

s(t) =

∫

y

∫

x

δ(x − x0)e
i[2πkx(t)x+b(t)]dxdy

= C1e
i[2πkx(t)x0+b(t)], (2.11)

where C1 is proportional to the slice length in y. The phase φ(t) can be extracted from s(t)

in equation 2.11 to be φ(t) = 2πkx(t)x0 + b(t). An unwrapping algorithm must be used to

properly extract kx(t).

Data for another x-axis slice excitation at the same position x0 is acquired, but during

the read-out following this excitation, the test waveform gradient is not applied (see figure

2-2(b)). For this case, the expression kx = 0 holds, and equation 2.11 becomes

s(t) = C2e
ib(t),
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(a)

RF
slice select test waveform

Gx

ADC

(b)

RF
slice select test waveform

Gx

ADC

Figure 2-2: Sequence for slice selection method characterizing a test waveform gradient on
the x-axis: (a) gradients on, (b) gradients off.

3mm 333.3m−1

x[mm] kx[m−1]

FT

Figure 2-3: Plots of actual data on the x-axis showing the relationship between slice thick-
ness (∆x = 3mm) and k-space zero crossing (2kzc = 333.3m−1).
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where C2 is some scaling factor that is not important for this algorithm. During this

measurement, any time-varying inhomogeneities (b(t)) not specific to a particular waveform

gradient is measured. From the difference in phase of the two scans, the result is equal to

∆φ(t) = 2πkx(t)x0 + ∆b(t). (2.12)

Note that ∆b(t) 6= 0 because of time-varying distortions resulting from the test waveform

gradient itself.

One set of slice excitation is enough to estimate kx(t). Since each set of scans require

only two TRs, data for multiple slice locations can be obtained to reduce noise and to

improve the estimation. Duyn et al used 3 slice locations [2]. For multiple slices, the

k-space trajectory kx(t) can be extracted using linear least squares estimation (LLSE).

















−∆φ0(t)−

−∆φ1(t)−
...

−∆φn(t)−

















= 2π

















x0 1

x1 1
...

...

xn 1





















−kx(t)−

−∆b(t)−









−kx(t)−

−∆b(t)−



 =
1

2π

















x0 1

x1 1
...

...

xn 1

















†















−∆φ0(t)−

−∆φ1(t)−
...

−∆φn(t)−

















(2.13)

where † is the pseudo-inverse: A† = (AT A)−1AT

In equation 2.13, the time-varying ∆b(t) is extracted and may be analyzed. This distor-

tion term can also be left in kx(t), so the final estimated k-space trajectory will incorporate

all the different distortion effects. In this case, equation 2.13 simplifies to

(

−kx(t)−
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(2.14)

The same algorithm described can be used to characterize trajectories in the y-axis and
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the z-axis. The only difference is that the slice selection and test waveform gradients are

played on a different axis.

The slice selection is assumed to be an approximate impulse δ(x); however, this is not

the case in practice. The “impulse” has a finite width determined by the slice thickness ∆x.

The Fourier-transform of this “impulse” is equal to sin(πkx∆x)
πkx

, a sinc function with its first

zero crossings, kzc, at

|kzc| =
1

∆x
. (2.15)

Therefore, the k-space trajectories to be characterized must have a maximum k-space value,

kmax, that is absolutely smaller than kzc from equation 2.15. The value of kmax must equal

the value of kzc because the amplitude is negligible at k-space locations close to the zero

crossings. Overall, the larger the value of ∆x, the larger the value of kmax possible for the

test k-space trajectory. The value of ∆x cannot be decreased indefinitely because of its

proportional effect on the signal to noise ratio (SNR). Duyn et al used a slice thickness ∆x

equal to 3mm [2], yielding a maximum kmax of 333.3m−1 as seen in figure 2-3. In practice,

kmax should be limited to be less than 90% of kzc (kmax < 300m−1 for ∆x = 3mm) to

safely avoid the amplified noise near kzc.

Another nontrivial detail to this technique is that there is a minimum sampling rate fs

required for the ADC readout to allow for proper phase unwrapping. Between each sample,

I set the maximum phase difference to be less than 2π. Under this criteria, the phase

algorithm consists of setting the phase difference between each sample to be at a minimum.

Using equation 2.12 and considering ∆b(t) as part of kx(t), this condition can be generalized

through the following derivation:

∆φ(t1) − ∆φ(t0) ≤ 2π

2π(kx(t1) − kx(t0)) ≤ 2π

kx(t1) − kx(t0) ≤ 1

fs ≥
dkx(t)

dt
=

γ

2π
Gx(t) (2.16)

From equation 2.16, the sampling rate, fs, must be greater than the maximum value of

γ
2π

Gx(t).

In summary, the slice selection method does not require any unique hardware setup. This
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is an advantage shared by the self-encode method. The algorithm can be implemented with

trivial modifications to a given pulse sequence and can be used on any arbitrary phantom.

Additionally, this method has a much shorter scan time and reconstruction time compared

to the self-encode method. For TR = 300ms and 3 different slice locations, a scan time

of 0.3s × 3 = 0.9s is needed. For an additional b(t) measurement, the total scan duration

becomes 1.8s. A time duration of 1.8s is a vast improvement over the 24s duration required

by the self-encode method. Also, unlike the self-encode method, detailed knowledge about

the phantom scanned is unnecessary. However, this procedure has its own disadvantages.

Given equation 2.15, the slice selection method cannot characterize waveform gradients that

traverse too far in k-space. There is also a design trade-off between SNR and the maximum

possible k-space value kmax.

2.2.3 Self-encoded slice selection method

The self-encode method described in section 2.2.1 and the slice selection method described

in section 2.2.2 has its own advantages and disadvantages. The self-encode method allows

for test waveform gradients that push to the MR system’s maximum gradient amplitude and

maximum slew rate. However, this method has the cost of a large time duration for data

acquisition and reconstruction. The slice selection method backs away from the system’s

limits, but it allows for a much faster algorithm. I propose combining the two methods into

the self-encoded slice selection method to utilize both algorithms’ advantages.

The proposed method is a derivation of the slice selection method. But, the algorithm

requires a minor modification if the maximum k-space value of the test waveform gradient,

kmax, is greater than the first zero crossing, kzc (described by equation 2.15). As described

by the previous section (section 2.2.1), a safe kmax is where kmax < 0.9kzc or kmax < 0.9 1
∆x

for a slice thickness of ∆x. For trajectories with kmax > 0.9kzc, only portions of the

test waveform trajectories that have k-space values within 90% of kzc can be properly

characterized. In figure 2-5, 90% of kzc is denoted by the light gray box. For the x-axis,

this characterizable region Rc is defined to be

Rc = {kx : −0.9kzc < kx < 0.9kzc}, (2.17)

where kzc is defined by equation 2.15.
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Figure 2-4: Sequence for self-encoded slice selection method characterizing a test waveform
gradient on the x-axis: (a) gradients on, (b) gradients off.
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Figure 2-5: Diagram of the self-encoded slice selection method: (a) kse(n0) = 0, (b) a shift
in kx as a result of kse(n1) > 0
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In order to characterize test waveforms that have kmax > 0.9kzc, self-encode loops are

played before the test waveform gradient (as shown in figure 2-4). These self-encode loops

shift the test waveform trajectory by kse(n) such that a different portion of the k-space

trajectory is within Rc.

The number of self-encode loops, Nse, depends on the range of Rc and the value of kmax.

In the self-encoded slice selection method, the equation for Nse becomes

Nse =

⌈

kmax

0.9kzc

⌉

. (2.18)

A modification to equation 2.3 of the self-encode method, the k-space shift kse(n) of the

n-th self-encode is defined to be

kse(n) =











0, for Nse = 1

kmax − kzc

2 − n
(

2kmax

Nse

)

, for Nse > 1

, where n = 0, 1, 2, . . . Nse − 1.

(2.19)

To avoid using more self-encode loops than necessary, a separate self-encode gradient can be

used to center the k-space trajectory. With this addition, the test waveform gradient may

have a smaller kmax. If this approach is used, care must be taken during data processing in

shifting the trajectory back to its original position.

Extracting the measured k-space trajectory is similar to the procedure described for the

slice selection method in section 2.2.2, and it is exactly the same if Nse = 1. Additionally,

the self-encoded slice selection method uses the same approach of reducing the time-varying

b(t) effect (described by equation 2.12) and the same approach of extracting the final k-space

trajectory with LLSE (shown in equation 2.14).The same criteria for the sampling rate fs

(defined by equation 2.16) also still applies. Modification to characterize test waveform

gradients on the y-axis or z-axis is the same. The only difference from the previous method

is that during data processing the k-space trajectory must be spliced together.

The test waveform trajectory is characterized in different pieces that are determined by

Rc. To characterize the entire k-space trajectory, the Nse number of pieces must be spliced

together. The phase φ(n, t) for each of the pieces does not align properly because of the

additional phase induced by the self-encode loops and some time-varying distortions. To

overcome this obstacle, a 0.6 factor is used instead of the 0.9 factor in equation 2.18. This

28



guarantees an overlap between each consecutive piece. Equation 2.18 is redefined to be

Nse =

⌈

kmax

0.6kzc

⌉

. (2.20)

At each overlapping region, the average distance between each consecutive segment is used

to shift and connect the following piece of k-space trajectory with the preceding piece. In

this way, the entire k-space trajectory is spliced together. Afterward, the measured k-space

trajectory may need to be re-centered. A different factor other than 0.6 in equation 2.20

can be used; the only criteria for this factor is that it must be less than 0.9. Note that,

with a smaller factor, the overlapping region between each piece is larger resulting in a more

accurate splicing.

There are a couple of trade-offs particular to this method. One trade-off is between Nse

and the accuracy of the splice algorithm. Decreasing the 0.9 factor in equation 2.18 yields

more accurate splicing but a longer scan time due to a larger Nse. Another design parameter,

the slice thickness (∆x), addresses the trade-off between SNR and Nse. A decrease in ∆x

results in lower SNR but a shorter scan time due to a smaller Nse (according to equation

2.15 and equation 2.18)).

One assumption made in this algorithm is that the self-encode loops (seen in figure 2-4)

are well formed and accurate. The same assumption is made in the self-encode method.

However, the self-encode loops can be verified and corrected through the gradient charac-

terization of the self-encode loops themselves. In this way, the accuracy of the self-encode

loops can be confirmed or improved.

In short, the self-encoded slice selection method uses the slice selection method’s speed

and at the same time uses the self-encode method’s ability to characterize at the system’s

limits. The proposed self encoded slice selection method provides for an improved alterna-

tive to measure and correct k-space trajectories.

As noted before, the self-encode method with Nse = 80 requires a scan time of approxi-

mately 24s to measure 1 waveform with TR = 300ms. The method requires 48s for charac-

terization and correction of any time-varying waveform-independent distortions. With the

self-encoded slice selection method, a lower Nse (typically with a value in the range 1–5 for

normal waveform gradients) is needed to produce the same characterization quality. Even

with Nse = 4 and the same TR, the same waveform gradient analysis will require a scan
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time of only 7.2s for 3 slice locations and b(t) elimination. The reconstruction time for the

self-encoded slice selection method is also much shorter than for the self-encode method.

The difference becomes even more noticeable when multiple test waveform gradients are

being characterized.

2.3 Gradient transfer function

Characterizing each gradient desired on the scanner can be costly in terms of time. Kerr

proposed a method for characterizing the gradient system as a linear time-invariant transfer

function H(f) in his PhD thesis [3]. With a good model of H(f), the actual gradient

trajectory can be predicted quite well given the waveform gradient inputted into the system.

Distortion correction can be accomplished before the gradients are even played. Calculation

of the transfer function H(f) can be performed once per scanner and used multiple times

for accuracy improvement in data acquisition or data post-processing. Due to linearity,

H(f) can be applied to both the waveform gradients or the waveform k-space trajectories.

2.3.1 Frequency-domain approach

In his thesis [3], Kerr proposed characterizing sine waves of different frequencies as a method

of measuring the gradient system transfer function. To characterize the sinusoid waves, he

uses the self-encode method (section 2.2.1). With this approach, the gradient amplitude and

slew rate can be pushed to the system’s limits to allow for a more general transfer function.

However, if sinusoid waves with 76 different frequencies are measured using the self-encode

method of 80 resolution and a TR of 300ms, the characterization of the system would

take approximately 20min to also incorporate waveform-independent distortion corrections.

Additionally, multiple experiments might be also performed to test the reproducibility of the

modeled transfer function. Fortunately, the scan time can be greatly reduced if the proposed

self-encoded slice selection method (section 2.2.3) is used. Given an average number of self

encode loops in this method to be 5 with 3 different slice locations, the entire experiment

time is reduced by a factor of 4.

Depending on the allotted time determined by TE, one to three periods of the test

sinusoid wave gradient is played before data is obtained for characterization (see figure 2-

6). The extra periods give the system ample time for a sinusoidal steady state response [3].
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Figure 2-6: Sequence for gradient transfer function characterization on the x-axis using the
self-encoded slice excitation algorithm. This sequence is when the gradient test waveforms
are turned on.

Assuming linear time-invariance, the gradient system is defined as:

G(t, f0) = A(f0)sin(2πf0t) −→





Gradient

System



 −→ Ḡ(t, f0) = |H(f0)|A(f0)sin(2πf0t+ 6 H(f0))

(2.21)

where G(t, f0) is the test sinusoidal wave gradient with a frequency of f0, and Ḡ(t, f0) is

the output from the gradient system. The function Ḡ(t, f0) can be obtained by applying

a characterization algorithm, such as the self-encode method. The variable A(f0) is the

amplitude of the sinusoid such that either the maximum gradient amplitude or maximum

slew rate is reached. From equation 2.21, the magnitude and phase of H(f) can be readily

extracted from Ḡ(t, f0).

To minimize error, the frequencies (f) are chosen such that the periods are multiples

of the gradient raster time (tgr), the time that it takes the gradient system to change from

one gradient value to the next. Under this criteria, G(t, f) is assumed to be well-formed.

Additionally with this limitation, only a finite number of frequencies can be characterized,

where

f =
1

ktgr
where k = 1, 2, 3, . . . (2.22)

The maximum frequency f possible is limited by tgr.

Figure 2-7 shows an example self-encoded slice selection characterization of a sinusoid

waveform gradient with f = 1111.11Hz. The differences between the output sinusoid wave-

form and the input sinusoid waveform are very small as expected. These small differences,

31



0 1000 2000 3000 4000 5000 6000 7000
−200

−100

0

100

200

t [µs]

k x(t
) 

[m
−

1 ]

 

 
Ideal
Measured

3100 3150 3200

110

120

130

140

150

t [µs]

k x(t
) 

[m
−

1 ]

 

 

Figure 2-7: Graph of ideal (blue dashed) and measured (red solid) sine wave with f =
1111.11Hz. Characterized on the x-axis using the self-encoded slice selection method.

however, are what characterizes H(f). From the magnified plot in figure 2-7, the ampli-

tude decrease (corresponding to |H(1111.11Hz)|) and the phase shift (corresponding to

6 H(1111.11Hz)) can be seen.

Using the frequencies specified by equation 2.22, samples of the gradient transfer function

H(f) can be measured. Kerr proposed fitting these data points of |H(f)| and 6 H(f)

separately with spline interpolation. At the DC point and at higher frequencies, he used a

linear extrapolation of the three closest measured points to estimate the transfer function

at these two extremities [3]. According to equation 2.22, samples at higher frequencies

naturally have larger and larger spacing between each point. This property makes the

modeled transfer function more inaccurate at these higher frequencies.

2.3.2 Time-domain approach

Another approach in measuring H(f) is through the characterization of time-domain input

responses. Modifying equation 2.21 produces the following generalization:

x(t) −→





Gradient

System



 −→ y(t) (2.23)

where x(t) is the input test gradient and y(t) is the output gradient measured through one

of the gradient characterization methods, such as the self-encode method or the self-encoded

slice selection method. Given an arbitrary input x(t), the gradient system transfer function
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H(f) can be approximated to be

H(f) =
X(f)

Y (f)
, (2.24)

where X(f) = FT {x(t)} and Y (f) = FT {y(t)}.

Ideally, if x(t) = δ(t), the output would be the time-domain impulse response h(t), the

inverse Fourier-transform of H(f). Unfortunately, the δ(t) function with infinite height

and infinitesimally small width is impossible to implement in practice. An important de-

sign consideration is the actual shape of X(f). The input, x(t), can be set to a step

function, u(t), or a ramp function, tu(t). With x(t) = u(t), the Fourier transform is

equal to X(f) = 1
i2πf

+ 1
2δ(f). And, with x(t) = tu(t), the Fourier transform is equal

to X(f) = i 1
2π

d
df

(

1
i2πf

+ 1
2δ(f)

)

. The singularities δ(f) and d
df

δ(f) present an obstacle

when computing H(f). In practice, these singularities appear as very narrow sinc’s that

reduce the zero crossing of X(f). These sinc functions are present because the measured

data has a finite duration that is on the order of µs’s. The low zero crossings limit the

approximation of H(f) because H(f) can only be calculated for frequencies smaller than

the first zero crossings of X(f). Close to the zero crossings of X(f) the negligible amplitude

is overpowered by noise.

One possible approach for the time-domain approach is the use of x(t) = u(t) and

characterizing its derivative, an impulse δ(t), rather than the step function itself. By setting

the gradient input to u(t), the k-space trajectory measured is a ramp. To analyze dx
dt

(t),

two derivatives are required, and these derivatives introduce too much noise to properly

compute H(f).

With this design consideration, the x(t) I propose for the time-domain approach is a very

narrow triangle input with its slope determined by the maximum slew rate, msr ([T/m/s]),

and its peak determined by the maximum gradient amplitude, gmax ([T/m]).

x(t) =



























msrt, for 0 ≤ t ≤ gmax

msr

gmax − msr(t −
gmax

msr
), for gmax

msr
< t ≤ 2gmax

msr

0, for 2gmax

msr
≤ t

. (2.25)

Equation 2.25 demonstrates a triangle waveform gradient input that pushes the system’s

limits, allowing for a more general approximation of H(f) with higher possible values of f .

Given x(t) in equation 2.25, the magnitude of the Fourier transform of x(t) is described by
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the following expression:

|X(f)| ∝

(

sin(π gmax

msr
f)

π gmax

msr
f

)2

. (2.26)

From equation 2.26, the first zero crossing, fzc, of H(f) is when

|fzc| =
msr

gmax

. (2.27)

To characterize H(f) with the highest possible frequencies, gmax should be minimized and

msr should be maximized, taking care to keep these variables within the system’s limits.

The trade-off with input x(t) from equation 2.25 is between a larger characterizable region

of H(f) and better SNR. The characterizable region is determined by fzc, and SNR is

influenced by gmax.

Another point of consideration is that the gradient raster time, the period of x(t), may be

greater than the ADC sampling period, the period of y(t). To overcome this problem when

calculating H(f), a linear interpolation approximation is used to set the period between

each sample of x(t) equal to the period between each sample of y(t).

The time-domain characterization of the gradient transfer function is prone to noise

because a smaller data set is used. However, the noise can be minimized by taking the

average of multiple experiments. To eliminate high frequency noise, low pass filtering can

also be used on the data set before H(f) calculation. Overall, this method provides a

quicker way of calculating H(f) with a higher resolution in regards to f . Additionally, the

transfer function, H(f), measured using the time-domain analysis can be verified using the

frequency-domain algorithm described in section 2.3.1.
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Chapter 3

Experiment

The different gradient characterization methods were first analyzed and tested. After the

methods yielded consistent results, they were used to compute the gradient system transfer

function, H(f). Section 3.1 describes the material and apparatus used for experimenta-

tion. Section 3.2 describes the results of characterizing H(f) using the frequency-domain

approach, and section 3.3 does the same for the time-domain approach.

3.1 Material/Apparatus

The measurements were acquired on the 3T Siemens Tim Trio 60cm full-body magnetic

resonance scanner (Erlangen, Germany). The MR scanner has an absolute maximum gra-

dient amplitude of 40mT/m and an absolute maximum slew rate of 170.004T/m/s. A

spherical phantom filled with 1.25g NiSO4·4H2O per 1000g of H2O was used for all the

experiments. The head phantom has an outer diameter of 180mm and an inner diameter of

170mm. Data obtained was processed offline using Matlab, version 7.2 (The MathWorks,

Inc., Natick, MA, USA).

A TE of 16ms and a TR of 300ms were used for each scan. Spoilers, waveform gradients

that shift any residue energy away from the point of interest, and rewinders, waveform

gradients that return the k-space trajectory back to the origin, were used to allow for a

faster acquisition time. The sampling rate, fs, was held constant at 200Hz, yielding a

sampling period of 5µs.
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3.2 Frequency-domain approach

The bulk of the analysis was done using the frequency-domain approach. In section 3.2.1,

description is provided for how the algorithm was set up. Next, in section 3.2.2, the results

of the frequency-domain approach are described.

3.2.1 Setup

In order to estimate the gradient system transfer function H(f), 76 different locations

of H(f) where sampled using frequencies f logarithmically spaced apart in the range of

150Hz–6000Hz. According to equation 2.22, obtaining data for more than 76 frequencies

in the range of 150Hz–6000Hz would only oversample the lower frequencies. These samples

of H(f) were obtained through the characterization of sinusoid gradients with appropriate

frequencies. The sinusoid gradients were first measured in increasing frequency order, and

then they were measured in decreasing frequency order. This experiment tested to see

if the characterization of the sinusoid gradients were affected by the order that it was

measured. Fortunately, no differences were found in the characterization of H(f) when the

measurement order was altered.

In order to characterize H(f) at the system’s limits, the sinusoid waveform gradients

were set at maximum amplitude when permitted. Otherwise, the sinusoid waveforms were

set to a gradient amplitude limited by the maximum slew rate. To ensure that the test

waveforms were still playable on the Siemens MR scanner, the maximum gradient ampli-

tude was slightly lower to 38mT/m, and the maximum slew rate was slightly lowered to

160T/m/s. Additionally, because of an increased sensitivity to the stimulation monitor

on the y-axis, the maximum gradient amplitude on the y-axis was limited to 28mT/m.

Fortunately, the difference in maximum gradient amplitude used did not seem to have any

effect on the results. Figure 3.2.1(a) describes the gradient amplitude used for the different

frequencies (A(f) from equation 2.21). Also in the figure, the maximum k-space that the

sinusoid waveform reached (figure 3.2.1(b)) and the number of cycles used to characterize

a specific frequency (figure 3.2.1(c)) are plotted against the corresponding frequency. The

number of cycles characterized was determined by the duration of the readout, which was

equal to the length of the sinusoid with the longest period. The larger number of cycles for

higher frequencies was necessary because at higher frequencies, a smaller number of samples
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Figure 3-1: Properties of each of the sinusoid wave gradients used for estimating the gradi-
ent system transfer function H(f): (a) maximum gradient amplitude, (b) maximum k-space
value that the trajectory reached, (c) number of periods acquired and used for characteri-
zation.
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Figure 3-2: Time-varying inhomogeneities, b(t), for a 3mm slice excite located 50mm off
isocenter on the z-axis.

per period can be acquired.

The self-encode algorithm for gradient characterization was used to find H(f). The

number of self-encodes Nse was set to 80. Originally, the scaling factor Pse was set to

1.10. However, due to time-varying inhomogeneities, the measured trajectories were drifting

beyond the reaches of the algorithm determined by the design parameters, beyond kmaxPse.

So, a Pse value of 1.20 was used to provide sufficient k-space range. When applying both the

normal waveform gradient and the inverted waveform gradient to remove any time-varying

distortions (equation 2.10), the self-encode approach of estimating H(f) required a scan

time of 20:16min.

Next, the self-encoded slice selection algorithm was used to find H(f). With this algo-

rithm, the slice thickness ∆x was set to 3mm, yielding an average Nse of 5.4. Three different

slices were used where the locations were 35mm to 55mm off isocenter. With two scans (one

with the test waveform gradients off and another on) at each of the three slice locations, a

total scan time of 5:36min was required to characterize H(f). Since the self-encoded slice

selection algorithm resulted in the same estimation of H(f) as the self-encode algorithm, I

will focus on the results of H(f) using the self-encoded slice selection algorithm.

The time-varying inhomogeneity b(t) was measured to be a linear phase drift on the order

of −10rad/s. The linear drift had a slope independent of the scan duration but dependent

on the axis, slice location, and slice thickness. Figure 3-2 shows an example of a plot of b(t)

for a 3mm slice excite on the z-axis. For long scan times the frequency-independent drift

was very noticeable, so it was removed from the analysis of estimating H(f).
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Figure 3-3: Magnitude plots of the gradient system transfer function H(f) computed from
a frequency-domain analysis with the self-encoded slice selection algorithm: (a) x-axis, (b)
y-axis, (c) z-axis: (left) normal view of the magnitude plots, (right) a closer look at the
magnitude plots with error-bars at each sample.

3.2.2 Results

Using the setup described in section 3.2.1, the gradient systems on the x-axis, y-axis, and z-

axis were all characterized with respective transfer functions Hx(f), Hy(f), and Hz(f). The

self-encoded slice selection algorithm was used for each sinusoid gradient characterization.

Five measurements per axis were obtained, resulting in a total of 15 different measurements.

A separate transfer function was computed for each measurement. For every axis, the

resulting transfer function samples were averaged to produce the final functions shown in

figure 3-3 in terms of magnitude and in figure 3-4 in terms of phase. The magnitude and

phase were averaged separately. The error for the computed final H(f) was very small, but

got larger as the frequency increased.
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Figure 3-4: Phase plots of the gradient system transfer function H(f) computed from a
frequency-domain analysis with the self-encoded slice selection algorithm: (a) x-axis, (b)
y-axis, (c) z-axis: (left) normal view of the phase plots, (right) phase plots with error-bars
on each sample with the linear phase term removed.

At first glance, the plots in figure 3-3 and figure 3-4 show very little magnitude decay

but demonstrate a linear phase shift. On closer inspection at the magnitude plot of H(f),

there is a slight local maximum around 6000Hz. The cause of this deviation is yet unknown,

and further experimentation is required for the explanation. However, the results are as

expected; the overall trend in |H(f)| is a decrease in magnitude for higher frequencies.

The linear phase shift is interpreted as a time-delay on the order of 10µs. The values

of the shift in each axis is summarized in table 3.1. This time-delay is not unexpected

because it takes the system some time before reaching the desired gradient amplitude. By

removing the linear phase term from the picture, as seen on the right-side plots of figure

3-4, the additional phase effects are more noticeable especially at higher frequencies. At
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axis linear phase [rad/s] time delay [µs]

x −4.689 × 10−5 −7.462
y −4.028 × 10−5 −6.411
z −6.318 × 10−5 −10.055

Table 3.1: Linear phase component of 6 H(f).
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Figure 3-5: Gradient system transfer function Hx(f) on the x-axis fitted using spline inter-
polation: (top) magnitude, (bottom) phase.

these higher frequencies, the group delay is smaller compared to the group delay at lower

frequencies. I hypothesize that this discrepancy is due to the fact that at higher frequencies,

the inhomogeneities become more present in the magnitude rather than in the phase. At

these higher frequencies, it is harder for the gradient system to reach the specified gradient

amplitudes but easier to reach the desired period.

To be able to apply these results, the gradient system transfer function H(f) was fitted

using linear extrapolation and spline interpolation in a method described in section 2.3.1.

The Hx(f) used in practice is shown in figure 3-5.

3.3 Time-domain approach

The transfer function was also found using the time-domain approach. Originally, a box

function gradient input was used to approximate a step, but there was too much noise when
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Figure 3-6: Impulse response approximated using a triangle (with a gradient peak of
20mT/m) input on the x-axis (clockwise from the top left): ideal triangle Gx(t) input
(blue x ) plotted with the measured output (red solid), |Hx(f)| computed using frequency-
domain analysis (blue dashed) compared with |Hx(f)| computed using the impulse response
(red solid), kx(t) comparison, 6 Hx(f) comparison.

extracting H(f). Therefore, the results presented here analyze the response to triangle

gradient inputs.

The slope of these triangles was held constant at 168T/m/s, which is a little bit less

than the absolute maximum slew rate. Two different peak value of these triangle inputs

were tested: 20mT/mT and 24mT/m. Figure 3-6 shows the results of playing a 20mT/m

peak triangle waveform gradient on the x-axis. The k-space trajectory was measured using

the self-encoded slice selection algorithm. To compute Hx(f), the ideal Gx(t) was compared

with the measured Gx(t).

The obtained results as shown in figure 3-6 are remarkably similar to the results when

Hx(f) was computed using the frequency approach, figure 3-3(a) and figure 3-4(a). Com-

paring the frequency-domain approach and the time-domain approach, the phase and mag-

nitude have a negligible difference for low frequencies. However, at higher frequencies the

time-domain approach exhibits a lot more noise. The noise is expected due to the sensitivity

of the measured output to high frequency noise. Calculated from equation 2.27, the pre-

dicted maximum characterizable frequency for H(f) is less than 5750Hz for 24mT/m, and

8400Hz for 24mT/m. When the frequencies are close to these maximum values, the ampli-
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Figure 3-7: H(f) calculated using a time-domain analysis of a triangle (with a gradient peak
of 24mT/m) response (red solid) overlaid on H(f) computed using the frequency-domain
analysis (blue x ): (top) magnitude, (bottom) phase.

tude becomes quite small causing the signal to be washed out by noise. The noise is much

more apparent in figure 3-7, where Hx(f) was estimated using the time-domain response

to a 24mT/m peak triangle input. The usable portion of Hx(f) is where |f | < 6000Hz.

Outside this range, Hx(f) can be approximated using the same linear extrapolation and

spline interpolation method performed in the frequency-domain approach.
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Chapter 4

Discussion

4.1 Test waveforms

A number of different test waveform gradient inputs was used to test the validity and

accuracy of the estimated transfer function H(f) for each axis. Common waveform gradients

were analyzed: a trapezoid gradient input on the x-axis (section 4.1.1), a spiral gradient

input on the y-axis (section 4.1.2), and a echo-planar imaging (EPI) gradient input on the

z-axis (section 4.1.3).

4.1.1 Trapezoid gradient input on the x-axis

The most commonly used waveform gradient is the trapezoid input. For example, this

particular waveform gradient is used for the self-encode loops in the self-encode method

and in the self-encoded slice selection method. In my analysis, the trapezoid gradient had a

ramp up time and ramp down time of 210µs and a flat top duration of 2000µs at a gradient

amplitude of 38mT/m.

Using Hx(f), the output of the ideal trapezoid input was predicted. As seen in figure

4-1, the ideal, measured, and predicted waveforms were quite similar. As seen in the close-

up view in figure 4-1, the measured waveform gradient exhibited some ringing that is quite

accurately predicted by Hx(f). This analysis showed that the trapezoid gradient input was

quite accurate, solidifying the self-encode and self-encoded slice selection algorithms.
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Figure 4-1: Ideal (blue dashed), measured (red solid), and predicted (green dot dashed)
box wave gradient Gx(t). Characterized on the x-axis using the self-encoded slice selection
method.
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Figure 4-2: Ideal (blue dashed), measured (red solid), and predicted (green dot dashed)
spiral wave gradient Gy(t). Characterized on the y-axis using the self-encoded slice selection
method.
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4.1.2 Spiral gradient input on the y-axis

Spiral trajectory reconstruction requires an accurate knowledge of the k-space trajectory.

Therefore, it is important to make sure that either the actual k-space trajectory is known

or that the spiral waveform gradient inputs are accurate.

The spiral gradient input was analyzed on the y-axis; the result is summarized by figure

4-2. The actual waveform was very similar to its ideal counterpart. Minus the small bit of

noise, the main difference between the measured waveform and the ideal waveform was the

time-delay. Fortunately, the time-delay was predicted using Hy(f). For this experiment, the

linear phase portion of 6 Hy(f) or the time-delay was sufficient enough to accurately predict

the spiral waveform gradient output. From this result, the time-delay can be used to either

correct the spiral gradient input or correct the k-space trajectory used for reconstruction.

4.1.3 EPI gradient input on the z-axis

A commonly used fast MR imaging technique is the EPI method. In this method, the

k-trajectory quickly traverses back and forth in to acquire data in k-space. Similar to the

spiral trajectory reconstruction method, the EPI method requires accurate knowledge of the

k-space trajectory. For this analysis on the z-axis, the waveform gradient had a maximum

gradient amplitude of 28mT/m and a slew rate of 168T/m/s.

Figure 4-3 shows the EPI k-space trajectory and the corresponding waveform gradient.

The measured waveform gradient had some ringing that was partially predicted by Hz(f).

Additionally, the time-delay was very accurately predicted. Overall, the EPI method can

be more precisely executed with knowledge of the time delay.

The two figures in 4-3 emphasize the noise induced through taking a derivative, more

specifically calculating Gz(t) from the measured kz(t). In just looking at the k-space tra-

jectory kz(t) (figure 4-3(a)) , the prediction was sufficiently accurate.

4.2 Gradient correction

Having knowledge of the actual k-space trajectory and gradient system transfer function

naturally provides two ways of correcting gradient waveform distortion.

The first and quickest way of correcting any sort of gradient distortion is characteriz-

ing all the waveform gradients played for data acquisition. These waveforms can be either
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Figure 4-3: Ideal (blue dashed), measured (red solid), and predicted (green dot dashed) EPI
wave: (a) k-space trajectory kz(t), (b) gradient wave Gz(t). Characterized on the z-axis
using the self-encoded slice selection method.
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characterized using the self-encoded slice selection method (which require some scan time

and data processing for each specific waveform) or they can be characterized by using the

axis-specific H(f) (which requires a one time measurement) to find a good prediction of

the actual trajectory. After data is obtained for the actual scan, the data can be recon-

structed with the corrected k-space trajectories. This method requires the least amount of

implementation and is practical for waveforms with minimal distortion.

However, if the measured and predicted trajectories greatly differ from the ideal tra-

jectories or if the trajectories do not even reach the desired critical k-space locations, the

following approach is preferred. Using H(f) estimated for the corresponding axis, the input

gradient waveform can be modified to achieve the desired output. Simple Fourier-domain

calculations can be performed to estimate the input necessary for a closer to ideal output.

The most straightforward method is taking the Fourier transform of the ideal output and

carefully dividing that ideal output by H(f). One caveat is that the final input might need

to be modified due to maximum gradient amplitude and maximum slew rate constraints.

For the case of the MR gradient system in the analysis, the simplest and sufficiently

accurate correction is a compensation for the system’s time-delay on each axis. This com-

pensation can be done during data reconstruction by noting that the k-space trajectory

associated with each data point is delayed by a factor. Or, the correction can be performed

on the scanner by playing each gradient waveform earlier.

4.3 Summary

The methods of estimating the gradient system transfer function were quite robust and

barely differed from measurement to measurement. Varying the maximum gradient am-

plitude, maximum slew rate, and the order of the sinusoid gradients characterized had no

noticeable effect on the final calculated H(f).

The main difference between the ideal trajectory and the measured trajectory was the

time-delay factor specific to each axis, as summarized in table 3.1. There was some magni-

tude degradation, but the magnitude effect was very minimal.

As seen in figure 3-6 and figure 3-7, the time-domain analysis captured the time-delay

quite well. If the time-delay is the main concern, the time-domain approach will be the

choice of algorithm because of its speed in estimating H(f). This method of calculation only
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requires the characterization of only one waveform gradient. Furthermore, this approach

provides sufficient knowledge of the transfer function, especially if the Fourier transform of

the test waveform has mostly low frequency components.

However, the time-domain approach is prone to noise. For a more accurate representa-

tion of H(f), the frequency-domain approach is preferred. Characterizing different sinusoid

gradients to obtain H(f) provides a very accurate and robust method of obtaining samples

of H(f); this can be noted by the small error bars on figure 3-3 and figure 3-4. Besides

the obvious longer measurement times as compared to the duration needed for the time-

domain approach, the main drawback is the fact that less and less samples of H(f) can be

acquired at higher frequencies (see equation 2.22). Additionally, there is also a limit for the

characterizable frequency range. Theoretically, for a gradient raster time of 10µs, sinusoid

waveform gradients with up to a frequency of 50kHz can be characterized, which is a more

than sufficient range for practical waveform gradients. The range is not an issue with the

frequency-domain approach, only its undersampling rate of H(f) at higher frequencies.
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Chapter 5

Conclusion

In terms of gradient characterization algorithms, the self-encoded slice selection method is

a vast improvement over the self-encode method in speed. At the same time, the algorithm

allows for characterization of trajectories that push the MR system’s limits in gradient

amplitude and slew rate. Using the self-encoded slice selection method, estimating the

gradient system transfer function becomes a much faster process in both the frequency-

domain approach and the time-domain approach.

The gradient system transfer function estimation algorithms have a lot of room for

improvement in terms of quality and speed. The frequency-domain approach and the time-

domain approach both have their own inadequacies. The frequency-domain approach needs

more samples of H(f), which can be accomplished if more frequency samples (periods

that are non-multiples of the gradient raster time) can be accurately obtained. For the

time-domain approach, noise may be reduced through filtering or more measurements. Ad-

ditionally, time-domain responses to other inputs may provide a better way of estimating

H(f). Since the time-domain response to a triangle gradient input characterizes a small

range of frequencies, one possible solution is using a sinusoidally modulated version of the

same triangle. These modulated triangles characterize different portions of H(f) that can

be later spliced together to form a more complete model of the transfer function.

As seen through the different experiments, the 3T Siemens Tim Trio MR scanner per-

forms quite well in terms of waveform gradient accuracies even at the system’s specified

limits. As seen through the results, a simple time-delay is sufficient to correct the majority

of the scanner’s gradient system distortions. The time-delay can be quickly determined
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using a self-encoded slice selection characterization of a short triangle gradient input.

As briefly discussed in section 4.2, the next step is correcting the distortions shown by

H(f) and the test waveform gradients. Through a time-domain approach, the MR scanner

can be programmed to automatically obtain the time-delay and other general nonidealities

with an sufficient estimate of H(f). Afterward, simple corrections can be performed online

using the calculated H(f). Overall, the methods and analysis here present useful tools for

gradient distortion correction that can be used to further push the MR system to accomplish

novel tasks.
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